16 resultados para EXTRACELLULAR-MATRIX COMPONENTS
em Aston University Research Archive
Resumo:
The up-regulation and trafficking of tissue transglutaminase (TG2) by tubular epithelial cells (TEC) has been implicated in the development of kidney scarring. TG2 catalyses the crosslinking of proteins via the formation of highly stable e(?-glutamyl) lysine bonds. We have proposed that TG2 may contribute to kidney scarring by accelerating extracellular matrix (ECM) deposition and by stabilising the ECM against proteolytic decay. To investigate this, we have studied ECM metabolism in Opossum kidney (OK) TEC induced to over-express TG2 by stable transfection and in tubular cells isolated from TG2 knockout mice. Increasing the expression of TG2 led to increased extracellular TG2 activity (p < 0.05), elevated e(?-glutamyl) lysine crosslinking in the ECM and higher levels of ECM collagen per cell by 3H-proline labelling. Immunofluorescence demonstrated that this was attributable to increased collagen III and IV levels. Higher TG2 levels were associated with an accelerated collagen deposition rate and a reduced ECM breakdown by matrix metalloproteinases (MMPs). In contrast, a lack of TG2 was associated with reduced e(?-glutamyl) lysine crosslinking in the ECM, causing reduced ECM collagen levels and lower ECM per cell. We report that TG2 contributes to ECM accumulation primarily by accelerating collagen deposition, but also by altering the susceptibility of the tubular ECM to decay. These findings support a role for TG2 in the expansion of the ECM associated with kidney scarring.
Resumo:
Diabetic nephropathy affects 30-40% of diabetics leading to end-stage kidney failure through progressive scarring and fibrosis. Previous evidence suggests that tissue transglutaminase (tTg) and its protein cross-link product epsilon(gamma-glutamyl)lysine contribute to the expanding renal tubulointerstitial and glomerular basement membranes in this disease. Using an in vitro cell culture model of renal proximal tubular epithelial cells we determined the link between elevated glucose levels with changes in expression and activity of tTg and then, by using a highly specific site directed inhibitor of tTg (1,3-dimethyl-2[(oxopropyl)thio]imidazolium), determined the contribution of tTg to glucose-induced matrix accumulation. Exposure of cells to 36 mm glucose over 96 h caused an mRNA-dependent increase in tTg activity with a 25% increase in extracellular matrix (ECM)-associated tTg and a 150% increase in ECM epsilon(gamma-glutamyl)lysine cross-linking. This was paralleled by an elevation in total deposited ECM resulting from higher levels of deposited collagen and fibronectin. These were associated with raised mRNA for collagens III, IV, and fibronectin. The specific site-directed inhibitor of tTg normalized both tTg activity and ECM-associated epsilon(gamma-glutamyl)lysine. Levels of ECM per cell returned to near control levels with non-transcriptional reductions in deposited collagen and fibronectin. No changes in transforming growth factor beta1 (expression or biological activity) occurred that could account for our observations, whereas incubation of tTg with collagen III indicated that cross-linking could directly increase the rate of collagen fibril/gel formation. We conclude that Tg inhibition reduces glucose-induced deposition of ECM proteins independently of changes in ECM and transforming growth factor beta1 synthesis thus opening up its possible application in the treatment other fibrotic and scarring diseases where tTg has been implicated.
Resumo:
Objective - During pregnancy, the human cervix undergoes angiogenic transformations. VEGF is expressed in cervical stroma and is proposed to play key roles in the process of cervical ripening and dilation. This study was conducted to evaluate whether cervical secretion of VEGF can be of clinical value in predicting impending PTB. Study Design - In an observational prospective cohort study, we analyzed cervical fluid samples from 103 pregnant women (GA: median [IQR]: 28 [25-31] wks) who presented for either a routine prenatal visit (n=61) or for evaluation of threatened preterm labor (n=42). Cervical secretions were collected under a standard protocol which was followed in all cases. Cervical length (CL) was assessed by transvaginal ultrasound using well-established criteria. Dilation was evaluated by digital exam performed only after collection of the biological samples. VEGF levels were immunoassayed by investigators unaware of the clinical outcome. Main exclusion criteria were ruptured membranes, active labor, vaginal bleeding, vaginal exam or intercourse within 24h. Results were analyzed with and without normalization for total protein. Results - 1) Clinical characteristics of the cohort are presented in Table;2) VEGF was detectable in all specimens, with no correlation between its levels, CL, twins or GA at collection; 3) There was an inverse correlation between VEGF and cervical dilation (R=-0.646, P=0.003); 4) Women with cervical dilation =1 cm had lower VEGF compared to those with a closed cervix (P=0.003); 5) Women who experienced PTB within 14 days (n=11) had lower VEGF (P=0.003); 6) A free VEGF level of =600 pg/mL had a sensitivity, specificity, +LR and -LR of 70%, 95%, 13.5 and 0.3, respectively in predicting PTB within 14 days. Conclusions - Low VEGF levels in the cervicovaginal secretions of pregnant women are associated with an increased risk of PTB within 2 weeks of collection. Active engagement of VEGF in the process of cervical ripening and dilatation and/or increased affinity of extracellular matrix components for VEGF may provide explanation for our findings.
Resumo:
Mesenchymal stem cells (MSCs) stimulate angiogenesis within a wound environment and this effect is mediated through paracrine interactions with the endothelial cells present. Here we report that human MSC-conditioned medium (n=3 donors) significantly increased EaHy-926 endothelial cell adhesion and cell migration, but that this stimulatory effect was markedly donor-dependent. MALDI-TOF/TOF mass spectrometry demonstrated that whilst collagen type I and fibronectin were secreted by all of the MSC cultures, the small leucine rich proteoglycan, decorin was secreted only by the MSC culture that was least effective upon EaHy-926 cells. These individual extracellular matrix components were then tested as culture substrata. EaHy-926 cell adherence was greatest on fibronectin-coated surfaces with least adherence on decorin-coated surfaces. Scratch wound assays were used to examine cell migration. EaHy-926 cell scratch wound closure was quickest on substrates of fibronectin and slowest on decorin. However, EaHy-926 cell migration was stimulated by the addition of MSC-conditioned medium irrespective of the types of culture substrates. These data suggest that whilst the MSC secretome may generally be considered angiogenic, the composition of the secretome is variable and this variation probably contributes to donor-donor differences in activity. Hence, screening and optimizing MSC secretomes will improve the clinical effectiveness of pro-angiogenic MSC-based therapies.
Resumo:
Investigations were undertaken to study the role of the protein cross-linking enzyme tissue transglutaminase in changes associated with the extracellular matrix and in the cell death of human dermal fibroblasts following exposure to a solarium ultraviolet A source consisting of 98.8% ultraviolet A and 1.2% ultraviolet B. Exposure to nonlethal ultraviolet doses of 60 to 120 kJ per m2 resulted in increased tissue transglutaminase activity when measured either in cell homogenates, "in situ" by incorporation of fluorescein-cadaverine into the extracellular matrix or by changes in the epsilon(gamma-glutamyl) lysine cross-link. This increase in enzyme activity did not require de novo protein synthesis. Incorporation of fluorescein-cadaverine into matrix proteins was accompanied by the cross-linking of fibronectin and tissue transglutaminase into nonreducible high molecular weight polymers. Addition of exogenous tissue transglutaminase to cultured cells mimicking extensive cell leakage of the enzyme resulted in increased extracellular matrix deposition and a decreased rate of matrix turnover. Exposure of cells to 180 kJ per m2 resulted in 40% to 50% cell death with dying cells showing extensive tissue transglutaminase cross-linking of intracellular proteins and increased cross-linking of the surrounding extracellular matrix, the latter probably occurring as a result of cell leakage of tissue transglutaminase. These cells demonstrated negligible caspase activation and DNA fragmentation but maintained their cell morphology. In contrast, exposure of cells to 240 kJ per m2 resulted in increased cell death with caspase activation and some DNA fragmentation. These cells could be partially rescued from death by addition of caspase inhibitors. These data suggest that changes in cross-linking both in the intracellular and extracellular compartments elicited by tissue transglutaminase following exposure to ultraviolet provides a rapid tissue stabilization process following damage, but as such may be a contributory factor to the scarring process that results.
Resumo:
Heterotropic association of tissue transglutaminase (TG2) with extracellular matrix-associated fibronectin (FN) can restore the adhesion of fibroblasts when the integrin-mediated direct binding to FN is impaired using RGD-containing peptide. We demonstrate that the compensatory effect of the TG-FN complex in the presence of RGD-containing peptides is mediated by TG2 binding to the heparan sulfate chains of the syndecan-4 cell surface receptor. This binding mediates activation of protein kinase Ca (PKCa) and its subsequent interaction with ß1 integrin since disruption of PKCa binding to ß1 integrins with a cell-permeant competitive peptide inhibits cell adhesion and the associated actin stress fiber formation. Cell signaling by this process leads to the activation of focal adhesion kinase and ERK1/2 mitogen-activated protein kinases. Fibroblasts deficient in Raf-1 do not respond fully to the TG-FN complex unless either the full-length kinase competent Raf-1 or the kinase-inactive domain of Raf-1 is reintroduced, indicating the involvement of the Raf-1 protein in the signaling mechanism. We propose a model for a novel RGD-independent cell adhesion process that could be important during tissue injury and/or remodeling whereby TG-FN binding to syndecan-4 activates PKCa leading to its association with ß1 integrin, reinforcement of actin-stress fiber organization, and MAPK pathway activation.
Resumo:
Data suggest that for TG2 to be secreted, an intact N-terminal FN binding site (for which TG2 has high affinity) is required, however interaction of TG2 with its high affinity binding partners presents both in the intracellular and extracellular space as well as with specific cell surface receptors may also be involved in this process. Using a site-directed mutagenesis approach, the effects of specific mutations of TG2 on its translocation to the cell surface and secretion into the ECM have been investigated. Mutations include those affecting FN binding (FN1), HSPGs binding (HS1, HS2) GTP/GDP binding site (GTP1, 2) as well as N-terminal and C-terminal domains (TG2 deletion mutants N, and C). By performing transglutaminase activity assays, cell surface protein biotinylation and verifying distribution of TG2 mutants in the ECM we demonstrated that one of the potential heparan sulfate binding site mutants (HS2 mutant) is secreted at the cell surface in a much reduced manner and is less deposited into the ECM than the HS1 mutant. The HS2 mutant showed a low affinity for binding to a heparin sepharose column demonstrating this mutation site may be a potential heparan binding site of TG2. Analogous peptides to this site were shown to have some efficiency in the inhibition of the binding of the FN-TG2 complex to cell surface heparan sulfates in a cell adhesion assay indicating the peptide to be representative of the novel heparin binding site within TG2. The GTP binding site mutants GTP1 and GTP2 exhibited low specific activity however, GTP2 showed more secretion to the cell surface in comparison to GTP1. The FN1 binding mutant did not greatly affect TG2 activity nor did it alter TG2 secretion at the cell surface and deposition into the ECM indicating that fibronectin binding at this site on the enzyme is not an important factor. Interestingly an intact N-terminus (?1-15) appeared to be essential for enzyme externalisation. Removal of the first 15 amino acids (N-terminal mutant) abolished TG2 secretion to the cell surface as well as deposition into the ECM. In addition it reduced the enzymes affinity for binding to heparin. In contrast, deletion of the C-terminal TG2 domain (?594-687) increased enzyme secretion to the cell surface. Consistent with the data presented in this thesis we speculate that TG2 must fulfill two requirements to be successfully secreted from cells. The findings indicate that the closed conformation of the enzyme as well as intact N-terminal tail and a novel HS binding site within the TG2 molecule are key elements for the enzyme’s localisation at the cell surface and its deposition into the extracellular matrix. The importance of understanding the interactions between TG2, heparan sulfates and other TG2 binding partners at the cell surface could have an impact on the design of novel strategies for enzyme inhibition which could be important in the control of extracellular TG2 related diseases.
Resumo:
Tissue transglutaminase (TG2) is a multifunctional Ca2+ activated protein crosslinking enzyme secreted into the extracellular matrix (ECM), where it is involved in wound healing and scarring, tissue fibrosis, celiac disease and metastatic cancer. Extracellular TG2 can also facilitate cell adhesion important in wound healing through a non-transamidating mechanism via its association with fibronectin (FN), heparan sulphates (HS) and integrins. Regulating the mechanism how TG2 is translocated into the ECM therefore provides a strategy for modulating these physiological and pathological functions of the enzyme. Here, through molecular modelling and mutagenesis we have identified the HS binding site of TG2 202KFLKNAGRDCSRRSSPVYVGR222. We demonstrate the requirement of this binding site for translocation of TG2 into the ECM through a mechanism involving cell surface shedding of HS. By synthesizing a peptide NPKFLKNAGRDCSRRSS corresponding to the HS binding site within TG2, we also demonstrate how this mimicking peptide can in isolation compensate the RGD-induced loss of cell adhesion on FN via binding to syndecan-4, leading to activation of PKCa, pFAK-397 and ERK1/2 and the subsequent formation of focal adhesions and actin cytoskeleton organization. A novel regulatory mechanism for TG2 translocation into the extracellular compartment that depends upon TG2 conformation and the binding of HS is proposed.
Resumo:
Administration of active TG2 to two different in vitro angiogenesis assays resulted in the accumulation of a complex extracellular matrix (ECM) leading to the suppression of endothelial tube formation without causing cell death. Matrix accumulation was accompanied by a decreased rate of ECM turnover, with increased resistance to matrix metalloproteinase-1. Intratumor injection of TG2 into mice bearing CT26 colon carcinoma tumors demonstrated a reduction in tumor growth, and in some cases tumor regression. In TG2 knockout mice, tumor progression was increased and survival rate reduced compared to wild-type mice. In wild-type mice, an increased presence of TG2 was detectable in the host tissue around the tumor. Analysis of CT26 tumors injected with TG2 revealed fibrotic-like tissue containing increased collagen, TG2-mediated crosslink and reduced organized vasculature. TG2-mediated modulation of cell behavior via changes in the ECM may provide a new approach to solid tumor therapy.
Resumo:
In fibrotic conditions increases in TG2 activity has been linked to an increase in the deposition of extracellular matrix proteins. Using TG2 transfected Swiss 3T3 fibroblasts expressing TG2 under the control of the tetracycline-regulated inducible promoter, we demonstrate that induction of TG2 not only stimulates an increase in collagen and fibronectin deposition but also an increase in the expression of these proteins. Increased TG2 expression in these fibroblasts led to NF-kappaB activation, resulting in the increased expression of transforming growth factor (TGF) beta(1). In addition, cells overexpressing TG2 demonstrated an increase in biologically active TGFbeta(1) in the extracellular environment. A specific site-directed inhibitor of TG abolished the NF-kappaB and TGFbeta1 activation and the subsequent elevation in the synthesis and deposition of extracellular matrix proteins, confirming that this process depends on the induction of transglutaminase activity. Treatment of TG2-induced fibroblasts with nontoxic doses of nitric oxide donor S-nitroso-N-acetylpenicillamine resulted in decreased TG2 activity and apprehension of the inactive enzyme on the cell surface. This was paralleled by a reduction in activation of NF-kappaB and TGFbeta(1) production with a subsequent decrease in collagen expression and deposition. These findings support a role for NO in the regulation of TG2 function in the extracellular environment.
Resumo:
This review summarises the functions of the enzyme tissue transglutaminase (TG2) in the extracellular matrix (ECM) both as a matrix stabiliser through its protein cross-linking activity and as an important cell adhesion protein involved in cell survival. The contribution of extracellular TG2 to the pathology of important diseases such as cancer and fibrosis are discussed with a view to the potential importance of TG2 as a therapeutic target. The medical applications of TG2 are further expanded by detailing the use of transglutaminase cross-linking in the development of novel biocompatible biomaterials for use in soft and hard tissue repair.
Resumo:
Tissue transglutaminase (TG2) has been reported as a wound response protein. Once over-expressed by cells under stress such as during wound healing or following tissue damage, TG2 can be secreted and deposited into extracellular matrix, where it forms a heterocomplex (TG-FN) with the abundant matrix protein fibronectin (FN). A further cellular response elicited after tissue damage is that of matrix remodelling leading to the release of the Arg-Gly-Asp (RGD) containing matrix fragments by matrix matelloproteinases (MMPs). These peptides are able to block the interaction between integrin cell surface receptors and ECM proteins, leading to the loss of cell adhesion and ultimately Anoikis. This study provides a mechanism for TG2, as a stress-induced matrix protein, in protecting the cells from the RGD-dependent loss of cell adhesion and rescuing the cells from Anoikis. Mouse fibroblasts were used as a major model for this study, including different types of cell surface receptor knockout mouse embryonic fibroblasts (MEFs) (such as syndecan-4, a5, ß1 or ß3 integrins). In addition specific syndecan-2 targetting siRNAs, ß1 integrin and a4ß1 integrin functional blocking antibodies, and a specific targeting peptide against a5ß1 integrin A5-1 were used to investigate the involvement of these receptors in the RGD-independent cell adhesion on TG-FN. Crucial for TG-FN to compensate the RGD-independent cell adhesion and actin cytoskeleton formation is the direct interaction between the heparan sulfate chains of syndecan-4 and TG2, which elicits the inside-out signalling of a5ß1 integrin and the intracellular activation of syndecan-2 by protein kinase C a (PKCa). By using specific inhibitors, a cell-permeable inhibiting peptide and the detection of the phosphorylation sites for protein kinases and/or the translocation of PKCa via Western blotting, the activation of PKCa, focal adhesion kinase (FAK), ERK1/2 and Rho kinase (ROCK) were confirmed as downstream signalling molecules. Importantly, this study also investigated the influence of TG-FN on matrix turnover and demonstrated that TG-FN can restore the RGD-independent FN deposition process via an a5ß1 integrin and syndecan-4/2 co-signalling pathway linked by PKCa in a transamidating-independent manner. These data provide a novel function for TG2 in wound healing and matrix turnover which is a key event in a number of both physiological and pathological processes.
Resumo:
Pulsed field gel electrophoresis of 82 intestinal spirochaete isolates showed specific differentiation of Serpulina pilosicoli and Serpulina hyodysenteriae although considerable heterogeneity was observed, especially amongst S. pilosicoli isolates. In several cases genotypically similar isolates originated from different animals suggesting that cross-species transmission may have occurred. The Caco-2 and Caco-21HT29 cell models have been proposed as potentially realistic models of intestinal infection. Quantitation of adhesion to the cells showed isolate 3 82/91 (from a bacteraemia) to adhere at significantly greater numbers than any other isolate tested. This isolate produced a PFGE profile which differed from other S. pilosicoli isolates and so would be of interest for further study. Comparison of bacteraemic and other S. pilosicoli isolates suggested that bacteraemic isolates were not more specifically adapted for adhesion to, or invasion of the epithelial cell layer than other S. pilosicoli isolates. Genotypically similar isolates from differing animal origins adhered to the Caco-2 model at similar levels. Generation of a random genomic library of S. pilosicoli and screening with species specific monoclonal antibody has enabled the identification of a gene sequence encoding a protein which showed significant homology with an ancestral form of the enzyme pyruvate oxidoreductase. Immunoscreening with polyclonal serum identified the sequences of two gene clusters and a probable arylsulphatase. One gene cluster represented a ribosomal gene cluster which has a similar molecular arrangement to Borrelia burgdorjeri, Treponema pallidum and Thermatoga maritima. The other gene cluster contained an ABC transporter protein, sorbitol dehydrogenase and phosphomannose isomerase. An ELISA type assay was used to demonstrate that isolates of S. pilosicoli could adhere to components of the extracellular matrix such as collagen (type 1), fibronectin, laminin, and porcine gastric mucin.
Resumo:
Scaffolds derived from processed tissues offer viable alternatives to synthetic polymers as biological scaffolds for regenerative medicine. Tissue-derived scaffolds provide an extracellular matrix (ECM) as the starting material for wound healing and the functional reconstruction of tissues, offering a potentially valuable approach for the replacement of damaged or missing tissues. Additionally, acellular tissue may provide a natural microenvironment for host-cell migration and the induction of stem cell differentiation to contribute to tissue regeneration. There are a number of processing methods that aim to stabilize and provide an immunologically inert tissue scaffold. Furthermore, these tissue-processing methods can often be applied to xenogenic transplants because the essential components of the ECM are often maintained between species. In this study, we applied several tissue-processing protocols to the cornea in order to obtain a decellularized cornea matrix that maintained the clarity and mechanical properties of the native tissue. Histology, mechanical testing and electron microscopy techniques were used to assess the cell extraction process and the organization of the remaining ECM. In vitro cell seeding experiments confirmed the processed corneas’ biocompatibility.
Resumo:
We have recently found that celiac disease patient serum-derived autoantibodies targeted against transglutaminase 2 interfere with several steps of angiogenesis, including endothelial sprouting and migration, though the mechanism involved remained to be fully characterized. This study now investigated the processes underlying the antiangiogenic effects exerted by celiac disease patient antibodies on endothelial cells, with particular regard to the adhesion, migration, and polarization signaling pathway. We observed that celiac IgA reduced endothelial cell numbers by affecting adhesion without increasing apoptosis. Endothelial cells in the presence of celiac IgA showed weak attachment, a high susceptibility to detach from fibronectin, and a disorganized extracellular matrix due to a reduction of protein cross-links. Furthermore, celiac patient IgA led to secretion of active transglutaminase 2 from endothelial cells into the culture supernatants. Additionally, cell surface transglutaminase 2 mediated integrin clustering in the presence of celiac IgA was coupled to augmented expression of ß1-integrin. We also observed that celiac patient IgA-treated endothelial cells had migratory defects and a less polarized phenotype when compared to control groups, and this was associated with the RhoA signaling pathway. These biological effects mediated by celiac IgA on endothelial cells were partially influenced but not completely abolished by R281, an irreversible extracellular transglutaminase 2 enzymatic activity inhibitor. Taken together, our results imply that celiac patient IgA antibodies disturb the extracellular protein cross-linking function of transglutaminase 2, thus altering cell-extracellular matrix interactions and thereby affecting endothelial cell adhesion, polarization, and motility. © 2013 Springer Basel.