7 resultados para ESTRONE SULFATE

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidrug resistance protein 1 (MRP1) confers drug resistance and also mediates cellular efflux of many organic anions. MRP1 also transports glutathione (GSH); furthermore, this tripeptide stimulates transport of several substrates, including estrone 3-sulfate. We have previously shown that mutations of Lys(332) in transmembrane helix (TM) 6 and Trp(1246) in TM17 cause different substrate-selective losses in MRP1 transport activity. Here we have extended our characterization of mutants K332L and W1246C to further define the different roles these two residues play in determining the substrate and inhibitor specificity of MRP1. Thus, we have shown that TM17-Trp(1246) is crucial for conferring drug resistance and for binding and transport of methotrexate, estradiol glucuronide, and estrone 3-sulfate, as well as for binding of the tricyclic isoxazole inhibitor N-[3-(9-chloro-3-methyl-4-oxo-4H-isoxazolo-[4,3-c]quinolin-5-yl)-cyclohexylmethyl]-benzamide (LY465803). In contrast, TM6-Lys(332) is important for enabling GSH and GSH-containing compounds to serve as substrates (e.g., leukotriene C(4)) or modulators (e.g., S-decyl-GSH, GSH disulfide) of MRP1 and, further, for enabling GSH (or S-methyl-GSH) to enhance the transport of estrone 3-sulfate and increase the inhibitory potency of LY465803. On the other hand, both mutants are as sensitive as wild-type MRP1 to the non-GSH-containing inhibitors (E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid (MK571), 1-[2-hydroxy-3-propyl-4-[4-(1H-tetrazol-5-yl)butoxy]phenyl]-ethanone (LY171883), and highly potent 6-[4'-carboxyphenylthio]-5[S]-hydroxy-7[E], 11[Z]14[Z]-eicosatetrenoic acid (BAY u9773). Finally, the differing abilities of the cysteinyl leukotriene derivatives leukotriene C(4), D(4), and F(4) to inhibit estradiol glucuronide transport by wild-type and K332L mutant MRP1 provide further evidence that TM6-Lys(332) is involved in the recognition of the gamma-Glu portion of substrates and modulators containing GSH or GSH-like moieties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent efflux pump that can confer resistance to multiple anticancer drugs and transport conjugated organic anions. Unusually, transport of several MRP1 substrates requires glutathione (GSH). For example, estrone sulfate transport by MRP1 is stimulated by GSH, vincristine is co-transported with GSH, or GSH can be transported alone. In the present study, radioligand binding assays were developed to investigate the mechanistic details of GSH-stimulated transport of estrone sulfate by MRP1. We have established that estrone sulfate binding to MRP1 requires GSH, or its non-reducing analogue S-methyl GSH (S-mGSH), and further that the affinity (Kd) of MRP1 for estrone sulfate is 2.5-fold higher in the presence of S-mGSH than GSH itself. Association kinetics show that GSH binds to MRP1 first, and we propose that GSH binding induces a conformational change, which makes the estrone sulfate binding site accessible. Binding of non-hydrolyzable ATP analogues to MRP1 decreases the affinity for estrone sulfate. However, GSH (or S-mGSH) is still required for estrone sulfate binding, and the affinity for GSH is unchanged. Estrone sulfate affinity remains low following hydrolysis of ATP. The affinity for GSH also appears to decrease in the post-hydrolytic state. Our results indicate ATP binding is sufficient for reconfiguration of the estrone sulfate binding site to lower affinity and argue for the presence of a modulatory GSH binding site not associated with transport of this tripeptide. A model for the mechanism of GSH-stimulated estrone sulfate transport is proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent polytopic membrane protein that transports many anticancer drugs and organic anions. Its transport mechanism is multifaceted, especially with respect to the participation of GSH. For example, vincristine is cotransported with GSH, estrone sulfate transport is stimulated by GSH, or MRP1 can transport GSH alone, and this can be stimulated by compounds such as verapamil or apigenin. Thus, the interactions between GSH and MRP1 are mechanistically complex. To examine the similarities and differences among the various GSH-associated mechanisms of MRP1 transport, we have measured first the effect of GSH and several GSH-associated substrates/modulators on the binding and hydrolysis of ATP by MRP1 using 8-azidoadenosine-5'-[(32)P]-triphosphate ([(32)P]azidoATP) analogs, and second the initial binding of GSH and GSH-associated substrates/modulators to MRP1. We observed that GSH or its nonreducing derivative S-methylGSH (S-mGSH), but none of the GSH-associated substrate/modulators, caused a significant increase in [gamma-(32)P]azidoATP labeling of MRP1. Moreover, GSH and S-mGSH decreased levels of orthovanadate-induced trapping of [alpha-(32)P]azidoADP. [alpha-(32)P]azidoADP.Vi trapping was also decreased by estone sulfate, whereas vincristine, verapamil, and apigenin had no apparent effects on nucleotide interactions with MRP1. Furthermore, estrone sulfate and S-mGSH enhanced the effect of each other 15- and 10-fold, respectively. Second, although GSH binding increased the apparent affinity of MRP1 for all GSH-associated substrates/modulators tested, only estrone sulfate had a reciprocal effect on the apparent affinity of MRP1 for GSH. Overall, these results indicate significant mechanistic differences between MRP1-mediated transport of GSH and the ability of GSH to modulate MRP1 transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we describe the preparation of highly dispersible dry powders for pulmonary drug delivery that display sustained drug release characteristics. Powders were prepared by spray-drying 30% v/v aqueous ethanol formulations containing terbutaline sulfate as a model drug, chitosan as a drug release modifier and leucine as an aerosolisation enhancer. The influence of chitosan molecular weight on the drug release profile was investigated by using low, medium and high molecular weight chitosan or combinations thereof. Following spray-drying, resultant powders were characterised using scanning electron microscopy, laser diffraction, tapped density analysis, differential scanning calorimetry and thermogravitational analysis. The in vitro aerosolisation performance and drug release profile were investigated using Multi-Stage Liquid Impinger analysis and modified USP II dissolution apparatus, respectively. The powders generated were of a suitable aerodynamic size for inhalation, had low moisture content and were amorphous in nature. The powders were highly dispersible, with emitted doses of over 90% and fine particle fractions of up to 82% of the total loaded dose, and mass median aerodynamic diameters of less than 2.5microm. A sustained drug release profile was observed during dissolution testing; increasing the molecular weight of the chitosan in the formulation increased the duration of drug release. (c)2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dehydroepiandrosterone sulfate (DHEAS) is the most abundant steroid in the human circulation and is secreted by the adrenals in an age-dependent fashion, with maximum levels during the third decade and very low levels in old age. DHEAS is considered an inactive metabolite, whereas cleavage of the sulfate group generates dehydroepiandrosterone (DHEA), a crucial sex steroid precursor. However, here we show that DHEAS, but not DHEA, increases superoxide generation in primed human neutrophils in a dose-dependent fashion, thereby impacting on a key bactericidal mechanism. This effect was not prevented by coincubation with androgen and estrogen receptor antagonists but was reversed by the protein kinase C inhibitor Bisindolylmaleimide 1. Moreover, we found that neutrophils are unique among leukocytes in expressing an organic anion-transporting polypeptide D, able to mediate active DHEAS influx transport whereas they did not express steroid sulfatase that activates DHEAS to DHEA. A specific receptor for DHEAS has not yet been identified, but we show that DHEAS directly activated recombinant protein kinase C-ß (PKC-ß) in a cell-free assay. Enhanced PKC-ß activation by DHEAS resulted in increased phosphorylation of p47phox, a crucial component of the active reduced nicotinamide adenine dinucleotide phosphate complex responsible for neutrophil superoxide generation. Our results demonstrate that PKC-ß acts as an intracellular receptor for DHEAS in human neutrophils, a signaling mechanism entirely distinct from the role of DHEA as sex steroid precursor and with important implications for immunesenescence, which includes reduced neutrophil superoxide generation in response to pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic destruction of 1,1,1-trichloroethane (TCA) over model sulfated Pt(111) surfaces has been investigated by fast X-ray photoelectron spectroscopy and mass spectrometry. TCA adsorbs molecularly over SO4 precovered Pt(111) at 100 K, with a saturation coverage of 0.4 monolayer (ML) comparable to that on the bare surface. Surface crowding perturbs both TCA and SO4 species within the mixed adlayer, evidenced by strong, coverage-dependent C 1s and Cl and S 2p core-level shifts. TCA undergoes complete dechlorination above 170 K, accompanied by C−C bond cleavage to form surface CH3, CO, and Cl moieties. These in turn react between 170 and 350 K to evolve gaseous CO2, C2H6, and H2O. Subsequent CH3 dehydrogenation and combustion occurs between 350 and 450 K, again liberating CO2 and water. Combustion is accompanied by SO4 reduction, with the coincident evolution of gas phase SO2 and CO2 suggesting the formation of a CO−SOx surface complex. Reactively formed HCl desorbs in a single state at 400 K. Only trace (<0.06 ML) residual atomic carbon and chlorine remain on the surface by 500 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The endothelium is the primary barrier to leukocyte recruitment at sites of inflammation. Neutrophil recruitment is directed by transendothelial gradients of IL-8 that, in vivo, are bound to the endothelial cell surface. We have investigated the identity and function of the binding site(s) in an in vitro model of neutrophil transendothelial migration. In endothelial culture supernatants, IL-8 was detected in a trimolecular complex with heparan sulfate and syndecan-1. Constitutive shedding of IL-8 in this form was increased in the presence of a neutralizing Ab to plasminogen activator inhibitor-1 (PAI-1), indicating a role for endothelial plasminogen activator in the shedding of IL-8. Increased shedding of IL-8/heparan sulfate/syndecan-1 complexes was accompanied by inhibition of neutrophil transendothelial migration, and aprotinin, a potent plasmin inhibitor, reversed this inhibition. Platelets, added as an exogenous source of PAI-1, had no effect on shedding of the complexes or neutrophil migration. Our results indicate that IL-8 is immobilized on the endothelial cell surface through binding to syndecan-1 ectodomains, and that plasmin, generated by endothelial plasminogen activator, induces the shedding of this form of IL-8. PAI-1 appears to stabilize the chemoattractant form of IL-8 at the cell surface and may represent a therapeutic target for novel anti-inflammatory strategies.