6 resultados para ERYTHEMATOSUS
em Aston University Research Archive
Resumo:
8-Hydroxydeoxyguanosine (80HDG) is a specific marker of oxidative damage to DNA. We have observed that patients with SLE (systemic lupus erythematosus), have undetectable levels of urinary 80HDG by HPLC. Further analysis by GC-MS confirmed that levels of 80HDG in SLE urine were 10(3)-fold lower than in an age- and sex-matched control group. Experiments utilising cultures of SLE and normal lymphocytes exposed to H2O2 confirmed the impaired ability of SLE lymphocytes to repair 80HDG. We subsequently observed in SLE patients that 80HDG had accumulated in low molecular weight DNA associated with circulating immune complexes. We suggest that oxygen radicals may induce pathology in SLE by maintaining the presence of an antigenic form of DNA in the circulation.
Resumo:
Biomolecules are susceptible to many different post-translational modifications that have important effects on their function and stability, including glycosylation, glycation, phosphorylation and oxidation chemistries. Specific conversion of aspartic acid to its isoaspartyl derivative or arginine to citrulline leads to autoantibody production in models of rheumatoid disease, and ensuing autoantibodies cross-react with native antigens. Autoimmune conditions associate with increased activation of immune effector cells and production of free radical species via NADPH oxidases and nitric oxide synthases. Generation of neo-antigenic determinants by reactive oxygen and nitrogen species ROS and RNS) may contribute to epitope spreading in autoimmunity. The oxidation of amino acids by peroxynitrite, hypochlorous acid and other reactive oxygen species (ROS) increases the antigenicity of DNA, LDL and IgG, generating ligands for which autoantibodies show higher avidity. This review focuses on the evidence for ROS and RNS in promoting the autoimmune responses observed in diseases rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). It considers the evidence for ROS/RNS-induced antigenicity arising as a consequence of failure to remove or repair ROS/RNS damaged biomolecules and suggests that an associated defect, probably in T cell signal processing or/or antigen presentation, is required for the development of disease.
Resumo:
Antibodies reactive with native double stranded DNA are characteristic of the chronic inflammatory disease systemic lupus erythematosus. Native DNA is however, a poor immunogen and the mechanism of anti-DNA antibody production is incompletely understood. Modification of DNA can increase its immunogenicity and in inflammatory disease states reactive oxygen species produced from phagocytic cells have been shown to thus modify DNA. In this study, monoclonal antibodies produced spontaneously by two mice strains with lupus-like disease were used in a competition ELISA to monitor changes to DNA induced by reactive oxygen species. Different procedures for reactive oxygen species generation were found to cause distinct and characteristic changes to DNA involving modifications of base residues, the sugar-phosphate backbone and the gross conformational structure of double-stranded DNA. In view of this, it may be possible to use these antibodies further to probe DNA and infer the source and nature of the reactive oxygen species it has been exposed to, particularly in vivo.
Resumo:
Reactive oxygen species (ROS) are released at sites of inflammation during the respiratory burst which accompanies the phagocytic process. Using an in vitro system to simulate this process we have shown that ROS induce antigenic changes in DNA. More specifically, results of experiments using ROS scavengers have shown that hydroxyl radicals produced in close proximity to DNA-bound metal ions play a predominant role. ROS-mediated attack resulted in increased binding of anti-DNA antibodies to the denatured DNA. These changes were detected using IgG, IgA and IgM isotype binding to antibodies in systemic lupus erythematosus sera. Of these the IgA isotype was most discriminating in its detection of hydroxyl radical-induced damage.
Resumo:
This is the first comprehensive book about the relationship between apoptosis and autoimmune diseases. It offers a unique up–to–date overview on research results on the defective execution of apoptosis and the incomplete clearance of apoptotic cells. The molecular and cellular mechanisms involved are described in detail. As a possible consequence of apoptotic dysfunction, the development of severe autoimmune diseases (e.g., rheumatoid arthritis, systemic lupus erythematosus) is discussed. An outlook on future research topics includes the evaluation of novel therapeutic strategies.