25 resultados para EQUATION-ERROR MODELS
em Aston University Research Archive
Resumo:
The modelling of mechanical structures using finite element analysis has become an indispensable stage in the design of new components and products. Once the theoretical design has been optimised a prototype may be constructed and tested. What can the engineer do if the measured and theoretically predicted vibration characteristics of the structure are significantly different? This thesis considers the problems of changing the parameters of the finite element model to improve the correlation between a physical structure and its mathematical model. Two new methods are introduced to perform the systematic parameter updating. The first uses the measured modal model to derive the parameter values with the minimum variance. The user must provide estimates for the variance of the theoretical parameter values and the measured data. Previous authors using similar methods have assumed that the estimated parameters and measured modal properties are statistically independent. This will generally be the case during the first iteration but will not be the case subsequently. The second method updates the parameters directly from the frequency response functions. The order of the finite element model of the structure is reduced as a function of the unknown parameters. A method related to a weighted equation error algorithm is used to update the parameters. After each iteration the weighting changes so that on convergence the output error is minimised. The suggested methods are extensively tested using simulated data. An H frame is then used to demonstrate the algorithms on a physical structure.
Resumo:
We employ the methods of statistical physics to study the performance of Gallager type error-correcting codes. In this approach, the transmitted codeword comprises Boolean sums of the original message bits selected by two randomly-constructed sparse matrices. We show that a broad range of these codes potentially saturate Shannon's bound but are limited due to the decoding dynamics used. Other codes show sub-optimal performance but are not restricted by the decoding dynamics. We show how these codes may also be employed as a practical public-key cryptosystem and are of competitive performance to modern cyptographical methods.
Resumo:
In the Bayesian framework, predictions for a regression problem are expressed in terms of a distribution of output values. The mode of this distribution corresponds to the most probable output, while the uncertainty associated with the predictions can conveniently be expressed in terms of error bars. In this paper we consider the evaluation of error bars in the context of the class of generalized linear regression models. We provide insights into the dependence of the error bars on the location of the data points and we derive an upper bound on the true error bars in terms of the contributions from individual data points which are themselves easily evaluated.
Resumo:
We investigate the dependence of Bayesian error bars on the distribution of data in input space. For generalized linear regression models we derive an upper bound on the error bars which shows that, in the neighbourhood of the data points, the error bars are substantially reduced from their prior values. For regions of high data density we also show that the contribution to the output variance due to the uncertainty in the weights can exhibit an approximate inverse proportionality to the probability density. Empirical results support these conclusions.
Resumo:
Based on a statistical mechanics approach, we develop a method for approximately computing average case learning curves and their sample fluctuations for Gaussian process regression models. We give examples for the Wiener process and show that universal relations (that are independent of the input distribution) between error measures can be derived.
Resumo:
We study the performance of Low Density Parity Check (LDPC) error-correcting codes using the methods of statistical physics. LDPC codes are based on the generation of codewords using Boolean sums of the original message bits by employing two randomly-constructed sparse matrices. These codes can be mapped onto Ising spin models and studied using common methods of statistical physics. We examine various regular constructions and obtain insight into their theoretical and practical limitations. We also briefly report on results obtained for irregular code constructions, for codes with non-binary alphabet, and on how a finite system size effects the error probability.
Resumo:
The thesis presents a two-dimensional Risk Assessment Method (RAM) where the assessment of risk to the groundwater resources incorporates both the quantification of the probability of the occurrence of contaminant source terms, as well as the assessment of the resultant impacts. The approach emphasizes the need for a greater dependency on the potential pollution sources, rather than the traditional approach where assessment is based mainly on the intrinsic geo-hydrologic parameters. The risk is calculated using Monte Carlo simulation methods whereby random pollution events were generated to the same distribution as historically occurring events or a priori potential probability distribution. Integrated mathematical models then simulate contaminant concentrations at the predefined monitoring points within the aquifer. The spatial and temporal distributions of the concentrations were calculated from repeated realisations, and the number of times when a user defined concentration magnitude was exceeded is quantified as a risk. The method was setup by integrating MODFLOW-2000, MT3DMS and a FORTRAN coded risk model, and automated, using a DOS batch processing file. GIS software was employed in producing the input files and for the presentation of the results. The functionalities of the method, as well as its sensitivities to the model grid sizes, contaminant loading rates, length of stress periods, and the historical frequencies of occurrence of pollution events were evaluated using hypothetical scenarios and a case study. Chloride-related pollution sources were compiled and used as indicative potential contaminant sources for the case study. At any active model cell, if a random generated number is less than the probability of pollution occurrence, then the risk model will generate synthetic contaminant source term as an input into the transport model. The results of the applications of the method are presented in the form of tables, graphs and spatial maps. Varying the model grid sizes indicates no significant effects on the simulated groundwater head. The simulated frequency of daily occurrence of pollution incidents is also independent of the model dimensions. However, the simulated total contaminant mass generated within the aquifer, and the associated volumetric numerical error appear to increase with the increasing grid sizes. Also, the migration of contaminant plume advances faster with the coarse grid sizes as compared to the finer grid sizes. The number of daily contaminant source terms generated and consequently the total mass of contaminant within the aquifer increases in a non linear proportion to the increasing frequency of occurrence of pollution events. The risk of pollution from a number of sources all occurring by chance together was evaluated, and quantitatively presented as risk maps. This capability to combine the risk to a groundwater feature from numerous potential sources of pollution proved to be a great asset to the method, and a large benefit over the contemporary risk and vulnerability methods.
Resumo:
A novel direct integration technique of the Manakov-PMD equation for the simulation of polarisation mode dispersion (PMD) in optical communication systems is demonstrated and shown to be numerically as efficient as the commonly used coarse-step method. The main advantage of using a direct integration of the Manakov-PMD equation over the coarse-step method is a higher accuracy of the PMD model. The new algorithm uses precomputed M(w) matrices to increase the computational speed compared to a full integration without loss of accuracy. The simulation results for the probability distribution function (PDF) of the differential group delay (DGD) and the autocorrelation function (ACF) of the polarisation dispersion vector for varying numbers of precomputed M(w) matrices are compared to analytical models and results from the coarse-step method. It is shown that the coarse-step method achieves a significantly inferior reproduction of the statistical properties of PMD in optical fibres compared to a direct integration of the Manakov-PMD equation.
Resumo:
The equation of state for dense fluids has been derived within the framework of the Sutherland and Katz potential models. The equation quantitatively agrees with experimental data on the isothermal compression of water under extrapolation into the high pressure region. It establishes an explicit relationship between the thermodynamic experimental data and the effective parameters of the molecular potential.
Resumo:
A homologous series of ultra-violet stabilisers containing 2-hydroxybenzophenone (HBP) moiety as a uv absorbing chromophore with varying alkyl chain lengths and sizes were prepared by known chemical synthesis. The strong absorbance of the HBP chromophore was utilized to evaluate the concentration of these stabilisers in low density polyethylene films and concentration of these stabilisers in low density polyethylene films and in relevant solvents by ultra-violet/visible spectroscopy. Intrinsic diffusion coefficients, equilibrium solubilities, volatilities from LDPE films and volatility of pure stabilisers were studied over a temperature range of 5-100oC. The effects of structure, molecular weight and temperature on the above parameters were investigated and the results were analysed on the basis of theoretical models published in the literature. It has been found that an increase in alkyl chain lengths does not change the diffusion coefficients to a significant level, while attachment of polar or branched alkyl groups change their value considerably. An Arrhenius type of relationship for the temperature dependence of diffusion coefficients seems to be valid only for a narrow temperature range, and therefore extrapolation of data from one temperature to another leads to a considerable error. The evidence showed that increase in additive solubility in the polymer is favoured by lower heat of fusions and melting points of additives. This implies the validity of simple regular solution theory to provide an adequate basis for understanding the solubility of additives in polymers The volubility of stabilisers from low density polyethylene films showed that of an additive from a polymer can be expressed in terms of a first-order kinetic equation. In addition the rate of loss of stabilisers was discussed in relation to its diffusion, solubility and volatility and found that all these factors may contribute to the additive loss, although one may be a rate determining factor. Stabiliser migration from LDPE into various solvents and food simulants was studied at temperatures 5, 23, 40 and 70oC; from the plots of rate of migration versus square root time, characteristic diffusion coefficients were obtained by using the solution of Fick's diffusion equations. It was shown that the rate of migration depends primarily on partition coefficients between solvent and the polymer of the additive and also on the swelling action of the contracting media. Characteristic diffusion coefficients were found to approach to intrinsic values in non swelling solvents, whereas in the case of highly swollen polymer samples, the former may be orders of magnitude greater than the latter.
Resumo:
In this paper we present a novel method for emulating a stochastic, or random output, computer model and show its application to a complex rabies model. The method is evaluated both in terms of accuracy and computational efficiency on synthetic data and the rabies model. We address the issue of experimental design and provide empirical evidence on the effectiveness of utilizing replicate model evaluations compared to a space-filling design. We employ the Mahalanobis error measure to validate the heteroscedastic Gaussian process based emulator predictions for both the mean and (co)variance. The emulator allows efficient screening to identify important model inputs and better understanding of the complex behaviour of the rabies model.
Resumo:
Large monitoring networks are becoming increasingly common and can generate large datasets from thousands to millions of observations in size, often with high temporal resolution. Processing large datasets using traditional geostatistical methods is prohibitively slow and in real world applications different types of sensor can be found across a monitoring network. Heterogeneities in the error characteristics of different sensors, both in terms of distribution and magnitude, presents problems for generating coherent maps. An assumption in traditional geostatistics is that observations are made directly of the underlying process being studied and that the observations are contaminated with Gaussian errors. Under this assumption, sub–optimal predictions will be obtained if the error characteristics of the sensor are effectively non–Gaussian. One method, model based geostatistics, assumes that a Gaussian process prior is imposed over the (latent) process being studied and that the sensor model forms part of the likelihood term. One problem with this type of approach is that the corresponding posterior distribution will be non–Gaussian and computationally demanding as Monte Carlo methods have to be used. An extension of a sequential, approximate Bayesian inference method enables observations with arbitrary likelihoods to be treated, in a projected process kriging framework which is less computationally intensive. The approach is illustrated using a simulated dataset with a range of sensor models and error characteristics.
Resumo:
The purpose of this study is to develop econometric models to better understand the economic factors affecting inbound tourist flows from each of six origin countries that contribute to Hong Kong’s international tourism demand. To this end, we test alternative cointegration and error correction approaches to examine the economic determinants of tourist flows to Hong Kong, and to produce accurate econometric forecasts of inbound tourism demand. Our empirical findings show that permanent income is the most significant determinant of tourism demand in all models. The variables of own price, weighted substitute prices, trade volume, the share price index (as an indicator of changes in wealth in origin countries), and a dummy variable representing the Beijing incident (1989) are also found to be important determinants for some origin countries. The average long-run income and own price elasticity was measured at 2.66 and – 1.02, respectively. It was hypothesised that permanent income is a better explanatory variable of long-haul tourism demand than current income. A novel approach (grid search process) has been used to empirically derive the weights to be attached to the lagged income variable for estimating permanent income. The results indicate that permanent income, estimated with empirically determined relatively small weighting factors, was capable of producing better results than the current income variable in explaining long-haul tourism demand. This finding suggests that the use of current income in previous empirical tourism demand studies may have produced inaccurate results. The share price index, as a measure of wealth, was also found to be significant in two models. Studies of tourism demand rarely include wealth as an explanatory forecasting long-haul tourism demand. However, finding a satisfactory proxy for wealth common to different countries is problematic. This study indicates with the ECM (Error Correction Models) based on the Engle-Granger (1987) approach produce more accurate forecasts than ECM based on Pesaran and Shin (1998) and Johansen (1988, 1991, 1995) approaches for all of the long-haul markets and Japan. Overall, ECM produce better forecasts than the OLS, ARIMA and NAÏVE models, indicating the superiority of the application of a cointegration approach for tourism demand forecasting. The results show that permanent income is the most important explanatory variable for tourism demand from all countries but there are substantial variations between countries with the long-run elasticity ranging between 1.1 for the U.S. and 5.3 for U.K. Price is the next most important variable with the long-run elasticities ranging between -0.8 for Japan and -1.3 for Germany and short-run elasticities ranging between – 0.14 for Germany and -0.7 for Taiwan. The fastest growing market is Mainland China. The findings have implications for policies and strategies on investment, marketing promotion and pricing.
Resumo:
The research described here concerns the development of metrics and models to support the development of hybrid (conventional/knowledge based) integrated systems. The thesis argues from the point that, although it is well known that estimating the cost, duration and quality of information systems is a difficult task, it is far from clear what sorts of tools and techniques would adequately support a project manager in the estimation of these properties. A literature review shows that metrics (measurements) and estimating tools have been developed for conventional systems since the 1960s while there has been very little research on metrics for knowledge based systems (KBSs). Furthermore, although there are a number of theoretical problems with many of the `classic' metrics developed for conventional systems, it also appears that the tools which such metrics can be used to develop are not widely used by project managers. A survey was carried out of large UK companies which confirmed this continuing state of affairs. Before any useful tools could be developed, therefore, it was important to find out why project managers were not using these tools already. By characterising those companies that use software cost estimating (SCE) tools against those which could but do not, it was possible to recognise the involvement of the client/customer in the process of estimation. Pursuing this point, a model of the early estimating and planning stages (the EEPS model) was developed to test exactly where estimating takes place. The EEPS model suggests that estimating could take place either before a fully-developed plan has been produced, or while this plan is being produced. If it were the former, then SCE tools would be particularly useful since there is very little other data available from which to produce an estimate. A second survey, however, indicated that project managers see estimating as being essentially the latter at which point project management tools are available to support the process. It would seem, therefore, that SCE tools are not being used because project management tools are being used instead. The issue here is not with the method of developing an estimating model or tool, but; in the way in which "an estimate" is intimately tied to an understanding of what tasks are being planned. Current SCE tools are perceived by project managers as targetting the wrong point of estimation, A model (called TABATHA) is then presented which describes how an estimating tool based on an analysis of tasks would thus fit into the planning stage. The issue of whether metrics can be usefully developed for hybrid systems (which also contain KBS components) is tested by extending a number of "classic" program size and structure metrics to a KBS language, Prolog. Measurements of lines of code, Halstead's operators/operands, McCabe's cyclomatic complexity, Henry & Kafura's data flow fan-in/out and post-release reported errors were taken for a set of 80 commercially-developed LPA Prolog programs: By re~defining the metric counts for Prolog it was found that estimates of program size and error-proneness comparable to the best conventional studies are possible. This suggests that metrics can be usefully applied to KBS languages, such as Prolog and thus, the development of metncs and models to support the development of hybrid information systems is both feasible and useful.
Resumo:
We consider the random input problem for a nonlinear system modeled by the integrable one-dimensional self-focusing nonlinear Schrödinger equation (NLSE). We concentrate on the properties obtained from the direct scattering problem associated with the NLSE. We discuss some general issues regarding soliton creation from random input. We also study the averaged spectral density of random quasilinear waves generated in the NLSE channel for two models of the disordered input field profile. The first model is symmetric complex Gaussian white noise and the second one is a real dichotomous (telegraph) process. For the former model, the closed-form expression for the averaged spectral density is obtained, while for the dichotomous real input we present the small noise perturbative expansion for the same quantity. In the case of the dichotomous input, we also obtain the distribution of minimal pulse width required for a soliton generation. The obtained results can be applied to a multitude of problems including random nonlinear Fraunhoffer diffraction, transmission properties of randomly apodized long period Fiber Bragg gratings, and the propagation of incoherent pulses in optical fibers.