3 resultados para ENVIRONMENTAL STATISTICS

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

When making predictions with complex simulators it can be important to quantify the various sources of uncertainty. Errors in the structural specification of the simulator, for example due to missing processes or incorrect mathematical specification, can be a major source of uncertainty, but are often ignored. We introduce a methodology for inferring the discrepancy between the simulator and the system in discrete-time dynamical simulators. We assume a structural form for the discrepancy function, and show how to infer the maximum-likelihood parameter estimates using a particle filter embedded within a Monte Carlo expectation maximization (MCEM) algorithm. We illustrate the method on a conceptual rainfall-runoff simulator (logSPM) used to model the Abercrombie catchment in Australia. We assess the simulator and discrepancy model on the basis of their predictive performance using proper scoring rules. This article has supplementary material online. © 2011 International Biometric Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When constructing and using environmental models, it is typical that many of the inputs to the models will not be known perfectly. In some cases, it will be possible to make observations, or occasionally physics-based uncertainty propagation, to ascertain the uncertainty on these inputs. However, such observations are often either not available or even possible, and another approach to characterising the uncertainty on the inputs must be sought. Even when observations are available, if the analysis is being carried out within a Bayesian framework then prior distributions will have to be specified. One option for gathering or at least estimating this information is to employ expert elicitation. Expert elicitation is well studied within statistics and psychology and involves the assessment of the beliefs of a group of experts about an uncertain quantity, (for example an input / parameter within a model), typically in terms of obtaining a probability distribution. One of the challenges in expert elicitation is to minimise the biases that might enter into the judgements made by the individual experts, and then to come to a consensus decision within the group of experts. Effort is made in the elicitation exercise to prevent biases clouding the judgements through well-devised questioning schemes. It is also important that, when reaching a consensus, the experts are exposed to the knowledge of the others in the group. Within the FP7 UncertWeb project (http://www.uncertweb.org/), there is a requirement to build a Webbased tool for expert elicitation. In this paper, we discuss some of the issues of building a Web-based elicitation system - both the technological aspects and the statistical and scientific issues. In particular, we demonstrate two tools: a Web-based system for the elicitation of continuous random variables and a system designed to elicit uncertainty about categorical random variables in the setting of landcover classification uncertainty. The first of these examples is a generic tool developed to elicit uncertainty about univariate continuous random variables. It is designed to be used within an application context and extends the existing SHELF method, adding a web interface and access to metadata. The tool is developed so that it can be readily integrated with environmental models exposed as web services. The second example was developed for the TREES-3 initiative which monitors tropical landcover change through ground-truthing at confluence points. It allows experts to validate the accuracy of automated landcover classifications using site-specific imagery and local knowledge. Experts may provide uncertainty information at various levels: from a general rating of their confidence in a site validation to a numerical ranking of the possible landcover types within a segment. A key challenge in the web based setting is the design of the user interface and the method of interacting between the problem owner and the problem experts. We show the workflow of the elicitation tool, and show how we can represent the final elicited distributions and confusion matrices using UncertML, ready for integration into uncertainty enabled workflows.We also show how the metadata associated with the elicitation exercise is captured and can be referenced from the elicited result, providing crucial lineage information and thus traceability in the decision making process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research is concerned with the measurement of residents' evaluations of the environmental quality of residential areas. The research reflects the increased attention being given to residents' values in planning decisions affecting the residential environment. The work was undertaken in co-operation with a local authority which was in the process of revising its housing strategy, and in particular the priorities for improvement action. The study critically examines the existing evidence on environmental values and their relationship to the environment and points to a number of methodological and conceptual deficiencies. The research strategy developed on the basis of the research review was constrained by the need to keep any survey methods simple so that they could easily be repeated, when necessary, by the sponsoring authority. A basic perception model was assumed, and a social survey carried out to measure residents' responses to different environmental conditions. The data was only assumed to have ordinal properties, necessitating the extensive use of non-parametric statistics. Residents' expressions of satisfaction with the component elements of the environment (ranging from convenience to upkeep and privacy) were successfully related to 'objective' measures of the environment. However the survey evidence did not justify the use of the 'objective' variables as environmental standards. A method of using the social survey data directly as an aid to decision-making is discussed. Alternative models of the derivation of overall satisfaction with the environment are tested, and the values implied by the additive model compared with residents' preferences as measured directly in the survey. Residents' overall satisfactions with the residential environment were most closely related to their satisfactions with the "Appearance" and the "Reputation" of their areas. By contrast the most important directly measured preference was "Friendliness of area". The differences point to the need to define concepts used in social research clearly in operational terms, and to take care in the use of values 'measured' by different methods.