3 resultados para ENTEROCOCCUS-FAECIUM
em Aston University Research Archive
Resumo:
The effect of growth conditions on both the appearance and the antigenic profile of cells of Enterococcus faecalis was investigated using electron micrographs of ruthenium red stained and sectioned cells and SDS-PAGE and blotting techniques respectively. Three specific antigens of molecular weights 73, 40 and 37 kdaltons were of particular interest being expressed most strongly after growth in serum. This medium was deemed to most closely mimic jn vjvo growth conditions reflecting an environment similar to that which the microorganisms would encounter during bacteraemia, preceding the colonisation of the endocardium and the development of infective endocarditis. The 40 and 37 kdalton antigens were shown by immunoqold labelling to be exposed on the surface of the cells although they did not appear to be connected with the fimbriae shown to exist on some of the E. faecalis cells examined by negative staining. The 73, 40 and 37 kdalton antigens were crudely purified using sarkosyl and ammonium sulphate precipitation, and used as the basis of a serodiagnostic test for E. faecalis endocarditis using an ELISA system. This was tested in a blind trial and the success rates were 94% for positives, 90% for negatives with endocarditis caused by other organisms and 80% for E. faecalis infections other than endocarditis. The binding of E.faecalis cells to the serum proteins fibronectin and albumin was investigated using 125I labelled proteins, followed by Scatchard analysis. This showed that· E.faecalis cells do loosely bind large amounts of both of these proteins, thus surely affecting the way in which the host's immune system perceives the cells. The E.faecalis receptor for fibronectin was partially characterised and appeared to involve protein and/or carbohydrate containing components. but did not involve LTA or the 40 and 37 kdalton species specific antigens.
Resumo:
A general strategy for the expression of bacterial membrane transport and receptor genes in Escherichia coli is described. Expression is amplified so that the encoded proteins comprise 5-35% of E. coli inner membrane protein. Depending upon their topology, proteins are produced with RGSH6 or a Strep tag at the C-terminus. These enable purification in mg quantities for crystallization and NMR studies. Examples of one nutrient uptake and one multidrug extrusion protein from Helicobacter pylori are described. This strategy is successful for membrane proteins from H. pylori, E. coli, Enterococcus faecalis, Bacillus subtilis, Staphylococcus aureus, Microbacterium liquefaciens, Brucella abortus, Brucella melitensis, Campylobacter jejuni, Neisseria meningitides, Streptomyces coelicolor and Rhodobacter sphaeroides. ©2005 Biochemical Society.
Resumo:
Four novel oxapenem compounds were evaluated for their ß-lactamase inhibitory and antibacterial properties. Two (AM-112 and AM-113) displayed intrinsic antibacterial activity with MICs of between 2 to 16µg/ml and 0.5-2µg/ml against Escherichia coli and methicillin-sensitive and -resistant Staphylococcus aureus, respectively. The isomers of these compounds, AM-115 and AM-114 did not display significant antibacterial activity. Combination of the oxapenems with ceftazidime afforded protection against ß-lactamase-producing strains, including hyperproducers of class C enzymes and extended-spectrum ß-lactamase enzymes. A fixed 4µg/ml concentration of AM-112 protected a panel of eight cephalosporins against hydrolysis by class A and class C ß-lactamase producers. In vivo studies confirmed the protective effect of AM-112 for ceftazidime against ß-lactamase producing S. aureus, Enterobacter cloacae and E. coli strains in a murine intraperitoneal infection model. Each of the oxapenems inhibited class A, class C and class D ß-lactamases isolated from whole cells and purified by isoelectric focusing. AM-114 and AM-115 were as effective as clavulanic acid against class A enzymes. AM-112 and AM-113 were less potent against these enzymes. Class C and class D enzymes proved very susceptible to inhibition by the oxapenems. Molecular modelling of the oxapenems in the active site of the class A. TEM-1 and class C P99 enzymes identified a number of potential sites of interaction. The modelling suggested that Ser-130 in TEM-1 and Tyr-150 in P99 were likely candidates for cross-linking of the inhibitor, leading to inhibition of the enzyme. Morphology studies indicated that sub-inhibitory concentrations of the oxapenems caused the formation of round-shaped cells in E. coli DC0, indicating inhibition of penicillin-binding protein 2 (PBP2). The PBP affinity profile of AM-112 was examined in isolated cell membranes of E. coli DC0, S. aureus NCTC 6571, Enterococcus faecalis SFZ and E. faecalis ATCC 29213, in competition with a radiolabelled penicillin. PBP2 was identified as the primary target for AM-112 in E. coli DC0. Studies on S. aureus NCTC 6571 failed to identify a binding target. AM-112 bound to all the PBPs of both E. faecalis strains, and a concentration of 10µg/ml inhibited all the PBPs except PBP3.