7 resultados para ENERGY-ELECTRON DIFFRACTION

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fe3O4 GaAs hybrid structures have been studied using reflection high-energy electron diffraction (RHEED), x-ray photoelectron spectroscopy (XPS), x-ray magnetic circular dichroism (XMCD), and low-temperature vibrating-sample magnetometry (VSM). The samples were prepared by oxidizing epitaxial Fe thin films in a partial pressure of 5× 10-5 mbar of oxygen at 500 K for 180 s. Clear RHEED patterns were observed, suggesting the epitaxial growth of Fe oxides with a cubic structure. The XPS spectra show that the oxides were Fe3O4 rather than γ- Fe2O3, as there were no shake-up satellites between the two Fe 2p peaks. This was further confirmed by the XMCD measurements, which show ferromagnetic coupling between the Fe cations, with no evidence of intermixing at the interface. The VSM measurements show that the films have a magnetic uniaxial anisotropy and a "quick" saturation property, with the easy axes along the [011] direction. This detailed study offers further insight into the structure, interface, and magnetic properties of this hybrid Fe3O4 GaAs (100) structure as a promising system for spintronic application. © 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth and magnetic properties of epitaxial magnetite Fe3O4 on GaAs(100) have been studied by reflection high-energy electron diffraction, x-ray photoelectron spectroscopy, magneto-optical Kerr effect, and x-ray magnetic circular dichroism. The epitaxial Fe3O4 films were synthesized by in situ post growth annealing of ultrathin epitaxial Fe films at 500K in an oxygen partial pressure of 5×10−5mbar. The XMCD measurements show characteristic contributions from different sites of the ferrimagnetic magnetite unit cell, namely, Fetd3+, Feoh2+, and Feoh3+. The epitaxial relationship was found to be Fe3O4(100)⟨011⟩∕∕GaAs(100)⟨010⟩ with the unit cell of Fe3O4 rotated by 45° to match that of GaAs(100) substrate. The films show a uniaxial magnetic anisotropy in a thickness range of about 2.0–6.0nm with the easy axes along the [011] direction of the GaAs(100) substrate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Graphene layers have been produced from multi-walled carbon nanotube (MWCNT) bulk materials by friction when polished on ground-glass, offering a novel and effective method to produce graphene layers, which, more importantly, could be transferred to other substrates by rubbing. Field emission scanning electron microscopy, Raman spectroscopy, atomic force microscopy, transmission electron microscopy and selected area electron diffraction confirmed the formation of graphene layers. They were thought to be peeled away from the MWCNT walls due to friction. The reflection spectra showed that absorption of as-produced graphene layers decreased with wavelength in the range of 250–400 nm, compared to the MWCNT bulk material having strong absorption at 350 nm. Nanoscratch test was used to determine the mechanical properties of graphene films, suggesting the tolerance of as-produced graphene film to flaws introduced by scratch.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)1-(x+y), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Qmax = 28 Å-1) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and PO bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials. © 2013 The Owner Societies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have investigated the microstructure and bonding of two biomass-based porous carbon chromatographic stationary phase materials (alginic acid-derived Starbon® and calcium alginate-derived mesoporous carbon spheres (AMCS) and a commercial porous graphitic carbon (PGC), using high resolution transmission electron microscopy, electron energy loss spectroscopy (EELS), N2 porosimetry and X-ray photoelectron spectroscopy (XPS). The planar carbon sp -content of all three material types is similar to that of traditional nongraphitizing carbon although, both biomass-based carbon types contain a greater percentage of fullerene character (i.e. curved graphene sheets) than a non-graphitizing carbon pyrolyzed at the same temperature. This is thought to arise during the pyrolytic breakdown of hexauronic acid residues into C5 intermediates. Energy dispersive X-ray and XPS analysis reveals a homogeneous distribution of calcium in the AMCS and a calcium catalysis mechanism is discussed. That both Starbon® and AMCS, with high-fullerene character, show chromatographic properties similar to those of a commercial PGC material with extended graphitic stacks, suggests that, for separations at the molecular level, curved fullerene- like and planar graphitic sheets are equivalent in PGC chromatography. In addition, variation in the number of graphitic layers suggests that stack depth has minimal effect on the retention mechanism in PGC chromatography. © 2013 Elsevier Ltd. All rights reserved.