25 resultados para ELSE

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A property of sparse representations in relation to their capacity for information storage is discussed. It is shown that this feature can be used for an application that we term Encrypted Image Folding. The proposed procedure is realizable through any suitable transformation. In particular, in this paper we illustrate the approach by recourse to the Discrete Cosine Transform and a combination of redundant Cosine and Dirac dictionaries. The main advantage of the proposed technique is that both storage and encryption can be achieved simultaneously using simple processing steps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodegradable poly(dl-lactide-co-glycolide) microspheres were prepared using a modified double emulsion solvent evaporation method for the delivery of the subunit tuberculosis vaccine (Ag85B-ESAT-6), a fusion protein of the immunodominant antigens 6-kDa early secretory antigenic target (ESAT-6) and antigen 85B (Ag85B). Addition of the cationic lipid dimethyl dioctadecylammonium bromide (DDA) and the immunostimulatory trehalose 6,6'-dibehenate (TDB), either separately or in combination, was investigated for the effect on particle size and distribution, antigen entrapment efficiency, in vitro release profiles and in vivo performance. Optimised formulation parameters yielded microspheres within the desired sub-10 mu m range (1.50 +/- 0.13 mu m), whilst exhibiting a high antigen entrapment efficiency (95 +/- 1.2%) and prolonged release profiles. Although the microsphere formulations induced a cell-mediated immune response and raised specific antibodies after immunisation, this was inferior to the levels achieved with liposomes composed of the same adjuvants (DDA-TDB), demonstrating that liposomes are more effective vaccine delivery systems compared with microspheres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trehalose is a well known protector of biostructures like liposomes and proteins during freeze-drying, but still today there is a big debate regarding its mechanism of action. In previous experiments we have shown that trehalose is able to protect a non-phospholipid-based liposomal adjuvant (designated CAF01) composed of the cationic dimethyldioctadecylammonium (DDA) and trehalose 6,6-dibehenate (TDB) during freeze-drying [D. Christensen, C. Foged, I. Rosenkrands, H.M. Nielsen, P. Andersen, E.M. Agger, Trehalose preserves DDA/TDB liposomes and their adjuvant effect during freeze-drying, Biochim. Biophys. Acta, Biomembr. 1768 (2007) 2120-2129]. Furthermore it was seen that TDB is required for the stabilizing effect of trehalose. Herein, we show using the Langmuir-Blodgett technique that a high concentration of TDB present at the water-lipid interface results in a surface pressure around 67 mN/m as compared to that of pure DDA which is approximately 47 mN/m in the compressed state. This indicates that the attractive forces between the trehalose head group of TDB and water are greater than those between the quaternary ammonium head group of DDA and water. Furthermore, addition of trehalose to a DDA monolayer containing small amounts of TDB also increases the surface pressure, which is not observed in the absence of TDB. This suggests that even small amounts of trehalose groups on TDB present at the water-lipid interface associate free trehalose to the liposome surface, presumably by hydrogen bonding between the trehalose head groups of TDB and the free trehalose molecules. Hence, for CAF01 the TDB component not only stabilizes the cationic liposomes and enhances the immune response but also facilitates the cryo-/lyoprotection by trehalose through direct interaction with the head group of TDB. Furthermore the results indicate that direct interaction with liposome surfaces is necessary for trehalose to enable protection during freeze-drying.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism behind the immunostimulatory effect obtained with the cationic liposomal vaccine adjuvant DDA:TDB remains unclear. One of the proposed hypotheses is the 'depot effect' in which the liposomal carrier helps to retain the antigen at the injection site thereby increasing the time of vaccine exposure to the immune cells. In the present study we devise a method to quantify the in vivo movement of liposomes and vaccine antigen using the radioisotopes H(3) and I(125) respectively. H(3)-labeled liposomes composed of dimethyldioctadecylammonium bromide (DDA) or an 8:1 molar ratio of DDA and trehalose 6,6-dibehenate (TDB) were administered in combination with I(125)-labeled Ag85B-ESAT-6 antigen, both via intramuscular and subcutaneous injection to mice. Furthermore characterisation of the liposomal system in simulated in vivo conditions was undertaken. Our results show that this dual-labeling technique is functional and reproducible. The administration of Ag85B-ESAT-6 without a liposomal carrier leads to rapid dissemination of the antigen from the site of injection. The administration of Ag85B-ESAT-6 together with either DDA or DDA:TDB liposomes however leads to deposition of the antigen at the injection site with detectable levels still being present 14 days post injection. Neither the incorporation of TDB nor the route of injection had any significant influence on the depot effect of DDA-based liposomes. The presence of TDB in DDA liposomes improves draining of liposomes to the lymph node in addition to increasing monocyte influx to the site of injection as highlighted by the intensive blue colouring of the injection site after pontamine blue staining of phagocytic cells in vivo. Our findings provide conclusive evidence for a cationic liposome-mediated deposition of antigen at the injection site with improved monocyte infiltration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adjuvants are often composed of different constituents that can be divided into two groups based on their primary activity: the delivery system which carries and presents the vaccine antigen to antigen-presenting cells, and the immunostimulator that activates and modulates the ensuing immune response. Herein, we have investigated the importance of the delivery system and in particular its physical characteristics by comparing the delivery properties of two lipids which differ only in the degree of saturation of the acyl chains, rendering the liposomes either rigid (DDA, dimethyldioctadecylammonium) or highly fluid (DODA, dimethyldioleoylammonium) at physiological temperature. We show that these delivery systems are remarkably different in their ability to prime a Th1-directed immune response with the rigid DDA-based liposomes inducing a response more than 100 times higher compared to that obtained with the fluid DODA-based liposomes. Upon injection with a vaccine antigen, DDA-based liposomes form a vaccine depot that results in a continuous attraction of antigen-presenting cells that engulf a high amount of adjuvant and are subsequently efficiently activated as measured by an elevated expression of the co-stimulatory molecules CD40 and CD86. In contrast, the fluid DODA-based liposomes are more rapidly removed from the site of injection resulting in a lower up-regulation of co-stimulatory CD40 and CD86 molecules on adjuvant-positive antigen-presenting cells. Additionally, the vaccine antigen is readily dissociated from the DODA-based liposomes leading to a population of antigen-presenting cells that are antigen-positive but adjuvant-negative and consequently are not activated. These studies demonstrate the importance of studying in vivo characteristics of the vaccine components and furthermore show that physicochemical properties of the delivery system have a major impact on the vaccine-induced immune response. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simplified C32 monomycolyl glycerol (MMG) analogue demonstrated enhanced immunostimulatory activity in a dioctadecyl ammonium bromide (DDA)/Ag85B-ESAT-6 formulation. Elevated levels of IFN-gamma and IL-6 were produced in spleen cells from mice immunised with a C32 MMG analogue comparable activity to the potent Th1 adjuvant, trehalose 6,6'-di-behenate (TDB).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of liposomes and microspheres to enhance the efficacy of a sub-unit antigen was investigated. Microspheres were optimised by testing a range of surfactants employed in the external aqueous phase of a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation process for the preparation of microspherescomposed of poly(d,l-lactide-co-glycolide) and the immunological adjuvant dimethyl dioctadecyl ammonium bromide (DDA)and then investigated with regard to the physico-chemical and immunological characteristics of the particles produced. The results demonstrate that this parameter can affect the physico-chemical characteristics of these systems and subsequently, has a substantial bearing on the level of immune response achieved, both humoural and cell mediated, when employed for the delivery of the sub-unit tuberculosis vaccine antigen Ag85B-ESAT-6. Moreover, the microsphere preparations investigated failed to initiate immune responses at the levels achieved with an adjuvant DDA-based liposome formulation (DDA-TDB), further substantiating the superior ability of liposomes as vaccine delivery systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With respect to liposomes as delivery vehicles and adjuvants for vaccine antigens, the role of vesicle surface charge remains disputed. In the present study we investigate the influence of liposome surface charge and antigen-liposome interaction on the antigen depot effect at the site of injection (SOI). The presence of liposome and antigen in tissue at the SOI as well as the draining lymphatic tissue was quantified to analyse the lymphatic draining of the vaccine components. Furthermore investigations detailing cytokine production and T-cell antigen specificity were undertaken to investigate the relationship between depot effect and the ability of the vaccine to induce an immune response. Our results suggest that cationic charge is an important factor for the retention of the liposomal component at the SOI, and a moderate to high (>50%) level of antigen adsorption to the cationic vesicle surface was required for efficient antigen retention in the same tissue. Furthermore, neutral liposomes expressing poor levels of antigen retention were limited in their ability to mediate long term (14 days) antigen presentation to circulating antigen specific T-cells and to induce the Th1 and Th17 arms of the immune system, as compared to antigen adsorbing cationic liposomes. The neutral liposomes did however induce the production of IL-5 at levels comparable to those induced by cationic liposomes, indicating that neutral liposomes can induce a weak Th2 response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of liposomes as vaccine adjuvants has been investigated extensively over the last few decades. In particular, cationic liposomal adjuvants have drawn attention, with dimethyldioctadecylammonium (DDA) liposomes as a prominent candidate. However, cationic liposomes are, in general, not sufficiently immunostimulatory, which is why the combination of liposomes with immunostimulators has arisen as a strategy in the development of novel adjuvant systems in recent years. One such adjuvant system is CAF01. In this review, we summarize the immunological properties making CAF01 a promising versatile adjuvant system, which was developed to mediate protection against tuberculosis (TB) but, in addition, has shown promising protective efficacy against other infectious diseases requiring different immunological profiles. Further, we describe the stabilization properties that make CAF01 suitable in vaccine formulation for the developing world, which in addition to vaccine efficacy, are important prerequisites for any novel TB vaccine to reach global implementation. The encouraging nonclinical data led to a preclinical vaccine toxicology study of the TB model vaccine, Ag85B-ESAT-6/CAF01, that concluded that CAF01 has a satisfactory safety profile to advance the vaccine into phase I clinical trials, which are scheduled to start in 2009.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adjuvanticity of liposomes can be directed through formulation to develop a safe yet potent vaccine candidate. With the addition of the cationic lipid dimethyldioctadecylammonium bromide (DDA) to stable neutral distearoylphosphatidylcholine (DSPC):cholesterol (Chol) liposomes, vesicle size reduces while protein entrapment increases. The addition of the immunomodulator, trehalose 6,6-dibehenate (TDB) to either the neutral or cationic liposomes did not affect the physiochemical characteristics of these liposome vesicles. However, the protective immune response, as indicated by the amount of IFN-? production, increases considerably when TDB is present. High levels of IFN-? were observed for cationic liposomes; however, there was a marked reduction in IFN-? release over time. Conversely, for neutral liposomes containing TDB, although the initial amount of IFN-? was slightly lower than the cationic equivalent, the overall protective immune responses of these neutral liposomes were effectively maintained over time, generating good levels of protection. To that end, although the addition of DSPC and Chol reduced the protective immunity of DDA:TDB liposomes, relatively high protection was observed for the neutral counterpart, DSPC:Chol:TDB, which may offer an effective neutral alternative to the DDA:TDB cationic system, especially for the delivery of either zwitterionic (neutral) or cationic molecules or antigens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is concerned with the optimising of hearing protector selection. A computer model was used to estimate the reduction in noise exposure and risk of occupational deafness provided by the wearing of hearing protectors in industrial noise spectra. The model was used to show that low attenuation hearing protectors con provide greater protection than high attenuation protectors if the high attenuation protectors ore not worn for the total duration of noise exposure; or not used by a small proportion of the population. The model was also used to show that high attenuation protectors will not necessarily provide significantly greater reduction in risk than low attenuation protectors if the population has been exposed to the noise for many years prior to the provision of hearing protectors. The effects of earplugs and earmuffs on the localisation of sounds were studied to determine whether high attenuation earmuffs are likely to have greater potential than the lower attenuation earplugs for affecting personal safety. Laboratory studies and experiments at a foundry with normal-hearing office employees and noise-exposed foundrymen who had some experience of wearing hearing protectors showed that although earplugs reduced the ability of the wearer to determine the direction of warning sounds, earmuffs produced more total angular error and more confusions between left and right. !t is concluded from the research findings that the key to the selection of hearing protectors is to be found in the provision of hearing protectors that can be worn for a very high percentage of the exposure time by a high percentage of the exposed population with the minimum effect on the personal safety of the wearers - the attenuation provided by the protection should be adequate but not a maximum value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The immunostimulatory capacities of cationic liposomes are well-documented and are attributed both to inherent immunogenicity of the cationic lipid and more physical capacities such as the formation of antigen depots and antigen delivery. Very few studies have however been conducted comparing the immunostimulatory capacities of different cationic lipids. In the present study we therefore chose to investigate three of the most well-known cationic liposome-forming lipids as potential adjuvants for protein subunit vaccines. The ability of 3ß-[N-(N',N'-dimethylaminoethane)carbomyl] cholesterol (DC-Chol), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP), and dimethyldioctadecylammonium (DDA) liposomes incorporating immunomodulating trehalose dibehenate (TDB) to form an antigen depot at the site of injection (SOI) and to induce immunological recall responses against coadministered tuberculosis vaccine antigen Ag85B-ESAT-6 are reported. Furthermore, physical characterization of the liposomes is presented. Our results suggest that liposome composition plays an important role in vaccine retention at the SOI and the ability to enable the immune system to induce a vaccine specific recall response. While all three cationic liposomes facilitated increased antigen presentation by antigen presenting cells, the monocyte infiltration to the SOI and the production of IFN-? upon antigen recall was markedly higher for DDA and DC-Chol based liposomes which exhibited a longer retention profile at the SOI. A long-term retention and slow release of liposome and vaccine antigen from the injection site hence appears to favor a stronger Th1 immune response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FULL TEXT: Like many people one of my favourite pastimes over the holiday season is to watch the great movies that are offered on the television channels and new releases in the movie theatres or catching up on those DVDs that you have been wanting to watch all year. Recently we had the new ‘Star Wars’ movie, ‘The Force Awakens’, which is reckoned to become the highest grossing movie of all time, and the latest offering from James Bond, ‘Spectre’ (which included, for the car aficionados amongst you, the gorgeous new Aston Martin DB10). It is always amusing to see how vision correction or eye injury is dealt with by movie makers. Spy movies and science fiction movies have a freehand to design aliens with multiples eyes on stalks or retina scanning door locks or goggles that can see through walls. Eye surgery is usually shown in some kind of day case simplified laser treatment that gives instant results, apart from the great scene in the original ‘Terminator’ movie where Arnold Schwarzenegger's android character encounters an injury to one eye and then proceeds to remove the humanoid covering to this mechanical eye over a bathroom sink. I suppose it is much more difficult to try and include contact lenses in such movies. Although you may recall the film ‘Charlie's Angels’, which did have a scene where one of the Angels wore a contact lens that had a retinal image imprinted on it so she could by-pass a retinal scan door lock and an Eddy Murphy spy movie ‘I-Spy’, where he wore contact lenses that had electronic gadgetry that allowed whatever he was looking at to be beamed back to someone else, a kind of remote video camera device. Maybe we aren’t quite there in terms of devices available but these things are probably not the behest of science fiction anymore as the technology does exist to put these things together. The technology to incorporate electronics into contact lenses is being developed and I am sure we will be reporting on it in the near future. In the meantime we can continue to enjoy the unrealistic scenes of eye swapping as in the film ‘Minority Report’ (with Tom Cruise). Much more closely to home, than in a galaxy far far away, in this issue you can find articles on topics much nearer to the closer future. More and more optometrists in the UK are becoming registered for therapeutic work as independent prescribers and the number is likely to rise in the near future. These practitioners will be interested in the review paper by Michael Doughty, who is a member of the CLAE editorial panel (soon to be renamed the Jedi Council!), on prescribing drugs as part of the management of chronic meibomian gland dysfunction. Contact lenses play an active role in myopia control and orthokeratology has been used not only to help provide refractive correction but also in the retardation of myopia. In this issue there are three articles related to this topic. Firstly, an excellent paper looking at the link between higher spherical equivalent refractive errors and the association with slower axial elongation. Secondly, a paper that discusses the effectiveness and safety of overnight orthokeratology with high-permeability lens material. Finally, a paper that looks at the stabilisation of early adult-onset myopia. Whilst we are always eager for new and exciting developments in contact lenses and related instrumentation in this issue of CLAE there is a demonstration of a novel and practical use of a smartphone to assisted anterior segment imaging and suggestions of this may be used in telemedicine. It is not hard to imagine someone taking an image remotely and transmitting that back to a central diagnostic centre with the relevant expertise housed in one place where the information can be interpreted and instruction given back to the remote site. Back to ‘Star Wars’ and you will recall in the film ‘The Phantom Menace’ when Qui-Gon Jinn first meets Anakin Skywalker on Tatooine he takes a sample of his blood and sends a scan of it back to Obi-Wan Kenobi to send for analysis and they find that the boy has the highest midichlorian count ever seen. On behalf of the CLAE Editorial board (or Jedi Council) and the BCLA Council (the Senate of the Republic) we wish for you a great 2016 and ‘may the contact lens force be with you’. Or let me put that another way ‘the CLAE Editorial Board and BCLA Council, on behalf of, a great 2016, we wish for you!’

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vesicular adjuvant systems composing dimethyldioctadecylammonium (DDA) can promote both cell-mediated and humoral immune responses to the tuberculosis vaccine fusion protein in mice. However, these DDA preparations were found to be physically unstable, forming aggregates under ambient storage conditions. Therefore there is a need to improve the stability of such systems without undermining their potent adjuvanticity. To this end, the effect of incorporating non-ionic surfactants, such as 1-monopalmitoyl glycerol (MP), in addition to cholesterol (Chol) and trehalose 6,6′-dibehenate (TDB), on the stability and efficacy of these vaccine delivery systems was investigated. Differential scanning calorimetry revealed a reduction in the phase transition temperature (T c) of DDA-based vesicles by ∼12°C when MP and cholesterol (1:1 molar ratio) were incorporated into the DDA system. Transmission electron microscopy (TEM) revealed the addition of MP to DDA vesicles resulted in the formation of multi-lamellar vesicles. Environmental scanning electron microscopy (ESEM) of MP-Chol-DDA-TDB (16:16:4:0.5 μmol) indicated that incorporation of antigen led to increased stability of the vesicles, perhaps as a result of the antigen embedding within the vesicle bilayers. At 4°C DDA liposomes showed significant vesicle aggregation after 28 days, although addition of MP-Chol or TDB was shown to inhibit this instability. Alternatively, at 25°C only the MP-based systems retained their original size. The presence of MP within the vesicle formulation was also shown to promote a sustained release of antigen in-vitro. The adjuvant activity of various systems was tested in mice against three subunit antigens, including mycobacterial fusion protein Ag85b-ESAT-6, and two malarial antigens (Merozoite surface protein 1, MSP1, and the glutamate rich protein, GLURP). The MP- and DDA-based systems induced antibody responses at comparable levels whereas the DDA-based systems induced more powerful cell-mediated immune responses. © 2006 The Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incorporation of the glycolipid trehalose 6,6′-dibehenate (TDB) into cationic liposomes composed of the quaternary ammonium compound dimethyldioctadecylammonium (DDA) produce an adjuvant system which induces a powerful cell-mediated immune response and a strong antibody response, desirable for a high number of disease targets. We have used differential scanning calorimetry (DSC) to investigate the effect of TDB on the gel-fluid phase transition of DDA liposomes and to demonstrate that TDB is incorporated into DDA liposome bilayers. Transmission Electron Microscopy (TEM) and cryo-TEM confirmed that liposomes were formed when a lipid film of DDA containing small amounts of TDB was hydrated in an aqueous buffer solution at physiological pH. Furthermore, time development of particle size and zeta potential of DDA liposomes incorporating TDB during storage at 4°C and 25°C, indicates that TDB effectively stabilizes the DDA liposomes. Immunization of mice with the mycobacterial fusion protein Ag85B-ESAT-6 in DDA-TDB liposomes induced a strong, specific Th1 type immune response characterized by substantial production of the interferon-γ cytokine and high levels of IgG2b isotype antibodies. The lymphocyte subset releasing the interferon-γ was identified as CD4 T cells.