4 resultados para Dynamic adsorption
em Aston University Research Archive
Resumo:
A detailed study has been made of the feasibility of adsorptive purification of slack waxes from traces of aromatic compounds using type 13X molecular sieves to achieve 0.01% aromatics in the product. The limited literature relating to the adsorption of high molecular weight aromatic compounds by zeolites was reviewed. Equilibrium isotherms were determined for typical individual aromatic compounds. Lower molecular weight, or more compact, molecules were preferentially adsorbed and the number of molecules captured by one unit cell decreased with increasing molecular weight of the adsorbate. An increase in adsorption temperature resulted in a decrease in the adsorption value. The isosteric heat of adsorption of differnt types of aromatic compounds was determined from pairs of isotherms at 303 K to 343 K at specific coverages. The lowest heats of adsorption were for dodecylbenzene and phenanthrene. Kinetics of adsorption were studied for different aromatic compounds. The diffusivity decreased significantly when a long alkyl chain was attached to the benzene ring e.g. in dodecylbenzene; molecules with small cross-sectional diameter e.g. cumene were adsorbed most rapidly. The sorption rate increased with temperature. Apparent activation energies increased with increasing polarity. In a study of the dynamic adsorption of selected aromatic compounds from binary solutions in isooctane or n-alkanes, naphthalene exhibited the best dynamic properties followed by dibenzothiophene and finally dodecylbenzene. The dynamic adsorption of naphthalene from different n-alkane solvents increased with a decrease in solvent molecular weight. A tentative mathematical approach is proposed for the prediction of dynamic breakthrough curves from equilibrium isotherms and kinetic data. The dynamic properties of liquid phase adsorption of aromatics from slack waxes were studied at different temperatures and concentrations. The optimum operating temperature was 543 K. The best dynamic performance was achieved with feeds of low aromatic content. The studies with individual aromatic compounds demonstrated the affinity of type NaX molecular sieves to adsorb aromatics in the concentration range 3% - 5% . Wax purification by adsorption was considered promising and extension of the experimental programme was recommended.
Resumo:
A study has been undertaken of the vapor-phase adsorptive separation of n-alkanes from Kuwait kerosene (Kuwait National Petroleum Company, heavy kerosene) using zeolite molecular sieves. Due to the shortage of information on the adsorption of multicomponent systems in the open literature, the present investigation was initiated to study the effect of feed flowrate, temperature, and zeolite particle size on the height of mass transfer zone (MTZ) and the dynamic capacity of the adsorbent for multicomponent n-alkanes adsorption on a fixed-bed of zeolite type-5A. The optimum operating conditions for separation of the n-alkanes has been identified so that the effluent would also be of marketable quality. The effect of multicycle adsorption-desorption stages on the dynamic behaviour of zeolite using steam as a desorbing agent has been studied and compared with n-pentane and n-hexane as desorbing agents. The separation process comprised one cycle of adsorption using a fixed-bed of zeolite type-5A. The bed was fed with vaporized kerosene until saturation had been achieved whereby the n-alkanes were adsorbed and the denormalized material eluted. The process of adsorption-desorption was carried out isobarically at one atmosphere. A mathematical model has been developed to predict the breakthrough time using the method of characteristics. The results were in a reasonable agreement with the experimental values. This model has also been utilized to develop the equilibrium isotherm. Optimum operating conditions were achieved at a feed flowrate of 33.33 x 10-9 m3/s, a temperature of 643 K, and a particle size of (1.0 - 2.0) x 10-3 m. This yielded an HMTZ value and a dynamic capacity of 0.206 m and 9.6S3 x 10-2 kg n-alkanes/kg of zeolite respectively. These data will serve as a basis for design of a commercial plant. The purity of liquid-paraffin product desorbed using steam was 83.24 wt%. The dynamic capacity was noticed to decrease sharply with the cycle number, without intermediate reactivation of zeolite, while it was kept unchanged by intermediate reactivation. Normal hexane was found to be the best desorbing agent, the efficiency of which was mounted to 88.2%.
Resumo:
As a basis for the commercial separation of normal paraffins a detailed study has been made of factors affecting the adsorption of binary liquid mixtures of high molecular weight normal paraffins (C12, C16, and C20) from isooctane on type 5A molecular sieves. The literature relating to molecular sieve properties and applications, and to liquid-phase adsorption of high molecular weight normal paraffin compounds by zeolites, was reviewed. Equilibrium isotherms were determined experimentally for the normal paraffins under investigation at temperatures of 303oK, 323oK and 343oK and showed a non-linear, favourable- type of isotherm. A higher equilibrium amount was adsorbed with lower molecular weight normal paraffins. An increase in adsorption temperature resulted in a decrease in the adsorption value. Kinetics of adsorption were investigated for the three normal paraffins at different temperatures. The effective diffusivity and the rate of adsorption of each normal paraffin increased with an increase in temperature in the range 303 to 343oK. The value of activation energy was between 2 and 4 kcal/mole. The dynamic properties of the three systems were investigated over a range of operating conditions (i.e. temperature, flow rate, feed concentration, and molecular sieve size in the range 0.032 x 10-3 to 2 x 10-3m) with a packed column. The heights of adsorption zones calculated by two independent equations (one based on a constant width, constant velocity and adsorption zone and the second on a solute material balance within the adsorption zone) agreed within 3% which confirmed the validity of using the mass transfer zone concept to provide a simple design procedure for the systems under study. The dynamic capacity of type 5A sieves for n-eicosane was lower than for n-hexadecane and n-dodecane corresponding to a lower equilibrium loading capacity and lower overall mass transfer coefficient. The values of individual external, internal, theoretical and experimental overall mass transfer coefficient were determined. The internal resistance was in all cases rate-controlling. A mathematical model for the prediction of dynamic breakthrough curves was developed analytically and solved from the equilibrium isotherm and the mass transfer rate equation. The experimental breakthrough curves were tested against both the proposed model and a graphical method developed by Treybal. The model produced the best fit with mean relative percent deviations of 26, 22, and 13% for the n-dodecane, n-hexadecane, and n-eicosane systems respectively.
Resumo:
The adsorption and diffusion of mixed hydrocarbon components in silicalite have been studied using molecular dynamic simulation methods. We have investigated the effect of molecular loadings and temperature on the diffusional behavior of both pure and mixed alkane components. For binary mixtures with components of similar sizes, molecular diffusional behavior in the channels was noticed to be reversed as loading is increased. This behavior was noticeably absent for components of different sizes in the mixture. Methane molecules in the methane/propane mixture have the highest diffusion coefficients across the entire loading range. Binary mixtures containing ethane molecules prove more difficult to separate compared to other binary components. In the ternary mixture, however, ethane molecules diffuse much faster at 400 K in the channel with a tendency to separate out quickly from other components. © 2005 Elsevier Inc. All rights reserved.