3 resultados para Dynamic Web

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ontologies have become a key component in the Semantic Web and Knowledge management. One accepted goal is to construct ontologies from a domain specific set of texts. An ontology reflects the background knowledge used in writing and reading a text. However, a text is an act of knowledge maintenance, in that it re-enforces the background assumptions, alters links and associations in the ontology, and adds new concepts. This means that background knowledge is rarely expressed in a machine interpretable manner. When it is, it is usually in the conceptual boundaries of the domain, e.g. in textbooks or when ideas are borrowed into other domains. We argue that a partial solution to this lies in searching external resources such as specialized glossaries and the internet. We show that a random selection of concept pairs from the Gene Ontology do not occur in a relevant corpus of texts from the journal Nature. In contrast, a significant proportion can be found on the internet. Thus, we conclude that sources external to the domain corpus are necessary for the automatic construction of ontologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Component-based development (CBD) has become an important emerging topic in the software engineering field. It promises long-sought-after benefits such as increased software reuse, reduced development time to market and, hence, reduced software production cost. Despite the huge potential, the lack of reasoning support and development environment of component modeling and verification may hinder its development. Methods and tools that can support component model analysis are highly appreciated by industry. Such a tool support should be fully automated as well as efficient. At the same time, the reasoning tool should scale up well as it may need to handle hundreds or even thousands of components that a modern software system may have. Furthermore, a distributed environment that can effectively manage and compose components is also desirable. In this paper, we present an approach to the modeling and verification of a newly proposed component model using Semantic Web languages and their reasoning tools. We use the Web Ontology Language and the Semantic Web Rule Language to precisely capture the inter-relationships and constraints among the entities in a component model. Semantic Web reasoning tools are deployed to perform automated analysis support of the component models. Moreover, we also proposed a service-oriented architecture (SOA)-based semantic web environment for CBD. The adoption of Semantic Web services and SOA make our component environment more reusable, scalable, dynamic and adaptive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence of pen-based mobile devices such as PDAs and tablet PCs provides a new way to input mathematical expressions to computer by using handwriting which is much more natural and efficient for entering mathematics. This paper proposes a web-based handwriting mathematics system, called WebMath, for supporting mathematical problem solving. The proposed WebMath system is based on client-server architecture. It comprises four major components: a standard web server, handwriting mathematical expression editor, computation engine and web browser with Ajax-based communicator. The handwriting mathematical expression editor adopts a progressive recognition approach for dynamic recognition of handwritten mathematical expressions. The computation engine supports mathematical functions such as algebraic simplification and factorization, and integration and differentiation. The web browser provides a user-friendly interface for accessing the system using advanced Ajax-based communication. In this paper, we describe the different components of the WebMath system and its performance analysis.