60 resultados para Dynamic Input-Output Balance
em Aston University Research Archive
Resumo:
In data envelopment analysis (DEA), operating units are compared on their outputs relative to their inputs. The identification of an appropriate input-output set is of decisive significance if assessment of the relative performance of the units is not to be biased. This paper reports on a novel approach used for identifying a suitable input-output set for assessing central administrative services at universities. A computer-supported group support system was used with an advisory board to enable the analysts to extract information pertaining to the boundaries of the unit of assessment and the corresponding input-output variables. The approach provides for a more comprehensive and less inhibited discussion of input-output variables to inform the DEA model. © 2005 Operational Research Society Ltd. All rights reserved.
Resumo:
Astrocytes in the somatosensory ventrobasal (VB) thalamus of rats respond to glutamatergic synaptic input with metabotropic glutamate receptor (mGluR) mediated intracellular calcium ([Ca²?](i)) elevations. Astrocytes in the VB thalamus also release the gliotransmitter (GT) glutamate in a Ca²?-dependent manner. The tripartite synapse hypothesis posits that astrocytic [Ca²?](i) elevations resulting from synaptic input releases gliotransmitters that then feedback to modify the synapse. Understanding the dynamics of this process and the conditions under which it occurs are therefore important steps in elucidating the potential roles and impact of GT release in particular brain activities. In this study, we investigated the relationship between VB thalamus afferent synaptic input and astrocytic glutamate release by recording N-methyl-D-aspartate (NMDA) receptor-mediated slow inward currents (SICs) elicited in neighboring neurons. We found that Lemniscal or cortical afferent stimulation, which can elicit astrocytic [Ca²?](i) elevations, do not typically result in the generation of SICs in thalamocortical (TC) neurons. Rather, we find that the spontaneous emergence of SICs is largely resistant to acute afferent input. The frequency of SICs, however, is correlated to long-lasting afferent activity. In contrast to short-term stimulus-evoked GT release effects reported in other brain areas, astrocytes in the VB thalamus do not express a straightforward input-output relationship for SIC generation but exhibit integrative characteristics.
Resumo:
While conventional Data Envelopment Analysis (DEA) models set targets for each operational unit, this paper considers the problem of input/output reduction in a centralized decision making environment. The purpose of this paper is to develop an approach to input/output reduction problem that typically occurs in organizations with a centralized decision-making environment. This paper shows that DEA can make an important contribution to this problem and discusses how DEA-based model can be used to determine an optimal input/output reduction plan. An application in banking sector with limitation in IT investment shows the usefulness of the proposed method.
Resumo:
In many real applications of Data Envelopment Analysis (DEA), the decision makers have to deteriorate some inputs and some outputs. This could be because of limitation of funds available. This paper proposes a new DEA-based approach to determine highest possible reduction in the concern input variables and lowest possible deterioration in the concern output variables without reducing the efficiency in any DMU. A numerical example is used to illustrate the problem. An application in banking sector with limitation of IT investment shows the usefulness of the proposed method. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
Biomass pyrolysis to bio-oil is one of the promising sustainable fuels. In this work, relation between biomass feedstock element characteristic and pyrolysis process outputs was explored. The element characteristics considered in this study include moisture, ash, fix carbon, volatile matter, carbon, hydrogen, nitrogen, oxygen, and sulphur. A semi-batch fixed bed reactor was used for biomass pyrolysis with heating rate of 30 °C/min from room temperature to 600 °C and the reactor was held at 600 °C for 1 h before cooling down. Constant nitrogen flow rate of 5 L/min was provided for anaerobic condition. Rice husk, Sago biomass and Napier grass were used in the study to form different element characteristic of feedstock by altering mixing ratio. Comparison between each element characteristic to total produced bio-oil yield, aqueous phase bio-oil yield, organic phase bio-oil yield, higher heating value of organic phase bio-oil, and organic bio-oil compounds was conducted. The results demonstrate that process performance is associated with feedstock properties, which can be used as a platform to access the process feedstock element acceptance range to estimate the process outputs. Ultimately, this work evaluated the element acceptance range for proposed biomass pyrolysis technology to integrate alternative biomass species feedstock based on element characteristic to enhance the flexibility of feedstock selection.
Resumo:
In this paper we propose a data envelopment analysis (DEA) based method for assessing the comparative efficiencies of units operating production processes where input-output levels are inter-temporally dependent. One cause of inter-temporal dependence between input and output levels is capital stock which influences output levels over many production periods. Such units cannot be assessed by traditional or 'static' DEA which assumes input-output correspondences are contemporaneous in the sense that the output levels observed in a time period are the product solely of the input levels observed during that same period. The method developed in the paper overcomes the problem of inter-temporal input-output dependence by using input-output 'paths' mapped out by operating units over time as the basis of assessing them. As an application we compare the results of the dynamic and static model for a set of UK universities. The paper is suggested that dynamic model capture the efficiency better than static model. © 2003 Elsevier Inc. All rights reserved.
Resumo:
Supply chain formation (SCF) is the process of determining the set of participants and exchange relationships within a network with the goal of setting up a supply chain that meets some predefined social objective. Many proposed solutions for the SCF problem rely on centralized computation, which presents a single point of failure and can also lead to problems with scalability. Decentralized techniques that aid supply chain emergence offer a more robust and scalable approach by allowing participants to deliberate between themselves about the structure of the optimal supply chain. Current decentralized supply chain emergence mechanisms are only able to deal with simplistic scenarios in which goods are produced and traded in single units only and without taking into account production capacities or input-output ratios other than 1:1. In this paper, we demonstrate the performance of a graphical inference technique, max-sum loopy belief propagation (LBP), in a complex multiunit unit supply chain emergence scenario which models additional constraints such as production capacities and input-to-output ratios. We also provide results demonstrating the performance of LBP in dynamic environments, where the properties and composition of participants are altered as the algorithm is running. Our results suggest that max-sum LBP produces consistently strong solutions on a variety of network structures in a multiunit problem scenario, and that performance tends not to be affected by on-the-fly changes to the properties or composition of participants.
Resumo:
This paper presents a general methodology for estimating and incorporating uncertainty in the controller and forward models for noisy nonlinear control problems. Conditional distribution modeling in a neural network context is used to estimate uncertainty around the prediction of neural network outputs. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localize the possible control solutions to consider. A nonlinear multivariable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non Gaussian distributions of control signal as well as processes with hysteresis.
Resumo:
We consider the direct adaptive inverse control of nonlinear multivariable systems with different delays between every input-output pair. In direct adaptive inverse control, the inverse mapping is learned from examples of input-output pairs. This makes the obtained controller sub optimal, since the network may have to learn the response of the plant over a larger operational range than necessary. Moreover, in certain applications, the control problem can be redundant, implying that the inverse problem is ill posed. In this paper we propose a new algorithm which allows estimating and exploiting uncertainty in nonlinear multivariable control systems. This approach allows us to model strongly non-Gaussian distribution of control signals as well as processes with hysteresis. The proposed algorithm circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider.
Resumo:
Liquid-liquid extraction has long been known as a unit operation that plays an important role in industry. This process is well known for its complexity and sensitivity to operation conditions. This thesis presents an attempt to explore the dynamics and control of this process using a systematic approach and state of the art control system design techniques. The process was studied first experimentally under carefully selected. operation conditions, which resembles the ranges employed practically under stable and efficient conditions. Data were collected at steady state conditions using adequate sampling techniques for the dispersed and continuous phases as well as during the transients of the column with the aid of a computer-based online data logging system and online concentration analysis. A stagewise single stage backflow model was improved to mimic the dynamic operation of the column. The developed model accounts for the variation in hydrodynamics, mass transfer, and physical properties throughout the length of the column. End effects were treated by addition of stages at the column entrances. Two parameters were incorporated in the model namely; mass transfer weight factor to correct for the assumption of no mass transfer in the. settling zones at each stage and the backmixing coefficients to handle the axial dispersion phenomena encountered in the course of column operation. The parameters were estimated by minimizing the differences between the experimental and the model predicted concentration profiles at steady state conditions using non-linear optimisation technique. The estimated values were then correlated as functions of operating parameters and were incorporated in·the model equations. The model equations comprise a stiff differential~algebraic system. This system was solved using the GEAR ODE solver. The calculated concentration profiles were compared to those experimentally measured. A very good agreement of the two profiles was achieved within a percent relative error of ±2.S%. The developed rigorous dynamic model of the extraction column was used to derive linear time-invariant reduced-order models that relate the input variables (agitator speed, solvent feed flowrate and concentration, feed concentration and flowrate) to the output variables (raffinate concentration and extract concentration) using the asymptotic method of system identification. The reduced-order models were shown to be accurate in capturing the dynamic behaviour of the process with a maximum modelling prediction error of I %. The simplicity and accuracy of the derived reduced-order models allow for control system design and analysis of such complicated processes. The extraction column is a typical multivariable process with agitator speed and solvent feed flowrate considered as manipulative variables; raffinate concentration and extract concentration as controlled variables and the feeds concentration and feed flowrate as disturbance variables. The control system design of the extraction process was tackled as multi-loop decentralised SISO (Single Input Single Output) as well as centralised MIMO (Multi-Input Multi-Output) system using both conventional and model-based control techniques such as IMC (Internal Model Control) and MPC (Model Predictive Control). Control performance of each control scheme was. studied in terms of stability, speed of response, sensitivity to modelling errors (robustness), setpoint tracking capabilities and load rejection. For decentralised control, multiple loops were assigned to pair.each manipulated variable with each controlled variable according to the interaction analysis and other pairing criteria such as relative gain array (RGA), singular value analysis (SVD). Loops namely Rotor speed-Raffinate concentration and Solvent flowrate Extract concentration showed weak interaction. Multivariable MPC has shown more effective performance compared to other conventional techniques since it accounts for loops interaction, time delays, and input-output variables constraints.
Resumo:
This work introduces a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. Convergence of the output error for the proposed control method is verified by using a Lyapunov function. Several simulation examples are provided to demonstrate the efficiency of the developed control method. The manner in which such a method is extended to nonlinear multi-variable systems with different delays between the input-output pairs is considered and demonstrated through simulation examples.