49 resultados para Drugs, Antimalarial.

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multivariable and progressive natural history of type 2 diabetes limits the effectiveness of available glucose-lowering drugs. Constraints imposed by comorbidities (notably cardiovascular disease and renal impairment) and the need to avoid hypoglycaemia, weight gain, and drug interactions further complicate the treatment process. These challenges have prompted the development of new formulations and delivery methods for existing drugs alongside research into novel pharmacological entities. Advances in incretin-based therapies include a miniature implantable osmotic pump to give continuous delivery of a glucagon-like peptide-1 receptor agonist for 6-12 months and once-weekly tablets of dipeptidyl peptidase-4 inhibitors. Hybrid molecules that combine the properties of selected incretins and other peptides are at early stages of development, and proof of concept has been shown for small non-peptide molecules to activate glucagon-like peptide-1 receptors. Additional sodium-glucose co-transporter inhibitors are progressing in development as well as possible new insulin-releasing biological agents and small-molecule inhibitors of glucagon action. Adiponectin receptor agonists, selective peroxisome proliferator-activated receptor modulators, cellular glucocorticoid inhibitors, and analogues of fibroblast growth factor 21 are being considered as potential new approaches to glucose lowering. Compounds that can enhance insulin receptor and post-receptor signalling cascades or directly promote selected pathways of glucose metabolism have suggested opportunities for future treatments. However, pharmacological interventions that are able to restore normal β-cell function and β-cell mass, normalise insulin action, and fully correct glucose homoeostasis are a distant vision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives The aim of this work was to investigate the effect of cholesterol on the bilayer loading of drugs and their subsequent release and to investigate fatty alcohols as an alternative bilayer stabiliser to cholesterol. Methods The loading and release rates of four low solubility drugs (diazepam, ibuprofen, midazolam and propofol) incorporated within the bilayer of multilamellar liposomes which contained a range of cholesterol (0–33 mol/mol%) or a fatty alcohol (tetradecanol, hexadecanol and octadecanol) were investigated. The molecular packing of these various systems was also investigated in Langmuir monolayer studies. Key findings Loading and release of drugs within the liposome bilayer was shown to be influenced by their cholesterol content: increasing cholesterol content was shown to reduce drug incorporation and inclusion of cholesterol in the bilayer changed the release profile of propofol from zero-order, for phosphatidyl choline only liposomes, to a first-order model when 11 to 33 total molar % of cholesterol was present in the formulation. At higher bilayer concentrations substitution of cholesterol with tetradecanol was shown to have less of a detrimental impact on bilayer drug loading. However, the presence of cholesterol within the liposome bilayer was shown to reduce drug release compared with fatty alcohols. Monolayer studies undertaken showed that effective mean area per molecule for a 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) : cholesterol mixture deviated by 9% from the predicted area compared with 5% with a similar DSPC : tetradecanol mixture. This evidence, combined with cholesterol being a much more bulky structure, indicated that the condensing influence of tetradecanol was less compared with cholesterol, thus supporting the reduced impact of tetradecanol on drug loading and drug retention. Conclusions Liposomes can be effectively formulated using fatty alcohols as an alternative bilayer stabiliser to cholesterol. The general similarities in the characteristics of liposomes containing fatty alcohols or cholesterol suggest a common behavioural influence for both compounds within the bilayer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Targeting of drugs and therapies locally to the esophagus is an important objective in the development of new and more effective dosage forms. Therapies that are retained within the oral cavity for both local and systemic action have been utilized for many years, although delivery to the esophagus has been far less reported. Esophageal disease states, including infections, motility disorders, gastric reflux, and cancers, would all benefit from localized drug delivery. Therefore, research in this area provides significant opportunities. The key limitation to effective drug delivery within the esophagus is sufficient retention at this site coupled with activity profiles to correspond with these retention times; therefore, a suitable formulation needs to provide the drug in a ready-to-work form at the site of action during the rapid transit through this organ. A successfully designed esophageal-targeted system can overcome these obstacles. This review presents a range of dosage form approaches for targeting the esophagus, including bioadhesive liquids and orally retained lozenges, chewing gums, gels, and films, as well as endoscopically delivered therapeutics. The techniques used to measure efficacy both in vitro and in vivo are also discussed. Drug delivery is a growing driver within the pharmaceutical industry and offers benefits both in terms of clinical efficacy, as well as in market positioning, as a means of extending a drug's exclusivity and profitability. Emerging systems that can be used to target the esophagus are reported within this review, as well as the potential of alternative formulations that offer benefits in this exciting area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper(II) complexes of some pyridine-2-carboxamidrazones have been prepared and characterized. The crystal structures of the copper complex cis-[dichloro(N1-2-acetylthiophene-pyridine-2-carboxamidrazone) copper(II)] 8a and one of the free ligands, viz. {(p-chloro-2-thioloxy-benzylidine-pyridine-2-carboxamidrazone)} 6, have been determined. The former shows a highly distorted square planar geometry around copper, with weak intermolecular coordination from the thiophenyl sulfur resulting in a stacking arrangement in the crystal lattice. The in vitro activities of the synthesized compounds against the malarial parasite Plasmodium falciparum are reported for the first time, which clearly shows the advantage of copper complexation and the requirement of four coordinate geometry around copper as some of the key structural features for designing such metal-based antimalarials. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: n-3 fatty acids are increasingly being administered to cancer patients for the treatment of cachexia, and it is thus important to know of any potential interactions with ongoing cytotoxic drug therapy. Materials and methods: For this reason eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were administered to mice bearing the cachexia-inducing MAC16 colon adenocarcinoma, and the effect of epothilone, gemcitabine, 5-fluorouracil and cyclophosphamide on tumour growth and body weight determined. Results: Epothilone alone had a minimal effect on tumour growth rate, but this was potentiated by DHA, while for 5-fluorouracil and cyclophosphamide tumour growth inhibition was enhanced by EPA. The antitumour effect of gemcitabine was not altered by either fatty acid. EPA arrested the development of cachexia, while DHA had no effect and the same was true for their effect on tumour growth rate. The anticachectic effect of EPA was only seen in combination with 5-fluorouracil. Conclusion: These results suggest that n-3 fatty acids do not interfere with the action of chemotherapy and may potentiate the effect of certain agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: Topical application of ophthalmic drugs is very inefficient; contact lenses used as drug delivery devices could minimize the drug loss and side effects. Styrene-maleic acid copolymers (PSMA) can form polymer-phospholipid complexes with dipalmitoyl phosphatidylcholine (DMPC) in the form of nanometric vesicles, which can easily solubilise hydrophobic drugs. They can be dispersed on very thin contact lens coatings to immobilize the drug on their surface. Methods: Two types of complexes stable at different pH values (5 and 7 respectively) where synthesized and loaded with drugs of different hydrophilicities during their formation process. The drug release was studied in vitro and compared to the free drug. Results: The mean sizes of the complexes obtained by light scattering were 50 nm and 450 nm respectively with low polydispersities. However, they were affected by the drugs load and release. An increase was observed in the duration of the release in the case of hydrophobic drugs, from days to weeks, avoiding initial “burst” and with a lesser amount of total drug released due to the interaction of the drug with the phospholipid core. The size and charge of the different drugs and the complexes nature also affected the release profile. Conclusions: Polymer-phospholipid complexes in the form of nanoparticles can be used to solubilise and release hydrophobic drugs in a controlled way. The drug load and release can be optimised to reach therapeutic values in the eye.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Absorption across the gastro-intestinal epithelium is via two pathways; the transcellular and paracellular pathway. Caco-2 cells, when cultured on polycarbonate filters, formed a confluent monolayer with many properties of differentiated intestinal epithelial cells, As a model of human gastro-intestinaJ tract epithelia they were used to elucidate and characterise the transepithelial transport of two protein kinase C inhibitors, N-(3-chlorophenyl)-4-[2-(3-hydroxypropylamino)-4-pyridyl]-2-pyrimidinamin (CHPP) and N-benzoyl-staurosporine (NBS), and the polypeptide, human calcitonin. Lanthanum ions are proposed as a paracellular pathway inhibitor and tested with D-mannitol permeability and transepithelial electrical resistance measurements. The effect La3+ has on the carrier-mediated transport of D-glucose and Sodium taurocholate as well as the vesicularly transcytosed horseradish peroxidase was also investigated. As expected, 2 mM apical La3+ increases transepithelial electrical resistance 1.S-fold and decreases mannitol permeability by 63.0 % ± 1.37 %. This inhibition was not repeated by other cations. Apical 2 mM La3+ was found to decrease carrier-mediated D-glucose and taurocholate permeability by only 8.7 % ± 1.6 %, 26.3 % ± 5.0 %. There was no inhibitory effect on testosterone or PEG 4000 permeability observed with La3+. However, for horseradish peroxidase and human calcitonin permeability was decreased by 98.7 % ± 11.7%, and 96.2 % ± 0.8 % respectively by 2 mM La3+. Indicating that human calcitonin could also be transported by vesicular transcytosis. The addition of 2 mM La3+ to the apical surface of Caco-2 monolayers produces a paracellular pathway inhibition. Therefore, La3+ could be a useful additional tool in delineating the transepithelial pathway of passive drug absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to investigate the various parameters that could control the encapsulation of lipophilic drugs and investigate the influence of the physical properties of poorly water-soluble drugs on bilayer loading. Initial work investigated on the solubilisation of ibuprofen, a model insoluble drug. Drug loading was assessed using HPLC and UV spectrophotometric analysis. Preliminary studies focused on the influence of bilayer composition on drug loading to obtain an optimum cholesterol concentration. This was followed up by studies investigating the effect of longer alkyl chain lipids, unsaturated alkyl chain lipids and charged lipids. The studies also focused on the effects of pH of the hydration medium and addition of the single chain surfactant a-tocopherol. The work was followed up by investigation of a range of insoluble drugs including flurbiprofen, indomethacin, sulindac, mefenamic acid, lignocaine and progesterone to investigate the influence of drugs properties and functional group on liposomal loading. The results show that no defined trend could be obtained linking the drug loading to the different drug properties including molecular weight, log P and other drug specific characteristics. However, the presence of the oppositely charged lipids improved the encapsulation of all the drugs investigated with a similar effect obtained with the substitution of the longer chain lipids. The addition of the single chain surfactant a-tocopherol resulted in enhancement of drug loading and possibly is governed by the log P of the drug candidate. Environmental scanning-electron microscopy (ESEM) was used to dynamically follow the changes in liposome morphology in real time during dehydration thereby providing a alternative assay of liposome formulation and stability. The ESEM analysis clearly demonstrated ibuprofen incorporation enhanced the stability of PC:Chol liposomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bioavailability of BCS II compounds may be improved by an enhanced solubility and dissolution rate. Four carboxylic acid drugs were selected, which were flurbiprofen, etodolac, ibuprofen and gemfibrozil. The drugs were chosen because they are weak acids with poor aqueous solubility and should readily form salts. The counterions used for salt formation were: butylamine, pentylamine, hexylamine, octylamine, benzylamine, cyclohexylamine, tert-butylamine, 2-amino-2-methylpropan­2-ol, 2-amino-2-methyl propan-1,3-ol and tromethamine. Solubility was partially controlled by the saturated solution pH with the butylamine counterion increasing the solution pH and solubility and dissolution to the greatest extent. As the chain length increased, solubility was reduced due to the increasing lipophilic nature of the counterion. The benzylamine and cyclohexylamine counterions produced crystalline, stable salts but did not improve solubility and dissolution significantly compared to the parent compound. The substitution of hydroxyl groups to tert-butylamine counterions produced an increase in solubility and dissolution. AMP2 resulted in the most enhanced solubility and dissolution compared to the parent drug but using the tris salt did not further improve solubility due to a very stable crystal lattice structure. The parent drugs were very difficult to compress due to orientation effects and lamination. Compacts were prepared of each parent drug and salt and their modulus of elasticity values were measured using a three-point bend (Young’s modulus, E0) were extrapolated to zero porosity and compared. Compressibility and E0 were improved with the butylamine, tert-butylamine, cyclohexylamine and AMP2 counterions. The most significant improvement in compression and E0 was with the AMP2 salts. Mechanical properties were related to the hydrogen bonding within the crystal lattice structure for the gemfibrozil salt series.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis is to investigate the physicochemical parameters which can influence drug loading within liposomes and to characterise the effect such formulations have on drug uptake and transport across in vitro epithelial barrier models. Liposomes composed of phosphatidylcholine (PC) or distearoyl phosphatidylcholine (DSPC) and cholesterol (0, 4, 8, 16 µM) were prepared and optimised in terms of drug loading using the hand-shaking method (Bangham et al., 1965). Subsequently, liposomes composed of 16 µM PC or DSPC and cholesterol (4 µM) were used to monitor hydroxybenzoate release and transport from Iiposomes. The MIT (3[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) and crystal violet assays were employed to determine toxicity of the Iiposome. formulations towards the Caco-2 cell line, employed to model the epithelial barrier in vitro. Uptake and transport of mannitol, propranolol, glutamine and digoxin was measured in the presence and absence of Iiposome formulations to establish changes in absorption resulting from the presence of lipid formulations. Incorporation of the four hydroxybenzoates was shown to be influenced by a number of factors, including liposome composition and drug conformation. Methyl hydroxybenzo.ate (MP) was incorporated into the bilayer most effectively with percentage incorporation of 68% compared to 45% for butyl hydroxybenzoate (BP), despite its increased Iipophilicity. This was attributed to the decreased packing ability of BP within the hydrocarbon core of the lipid bilayer compared to MP. Release studies also suggested that the smaller MP was more strongly incorporated within the lipid bilayer with only 8% of the incorporated solute being released after 48-hours compared to 17% in the case of BP. Model transport studies were seen to reflect drug release profiles from the liposome bilayers with significantly (p < 0.01) higher amounts of BP partitioning from the liposome compared to MP, Caco-2 cell viability was maintained above 86% in the presence of all Iiposome formulations tested indicating the liposome formulations are non-toxic towards Caco-2 cells. Paracellular (apical-to-basolateral) transport of mannitol was significantly increased in the presence of DSPC, PC / DSPC:Cholesterol (16:4 µM; 1000 µg). Glutamine uptake and transport via the carrier-mediated route was Significantly (p < 0.01) increased in the presence of PC I DSPC:Cholesterol (16:0; 16:4 µM). Digoxin apical-to-basolateral transport was significantly increased (p < 0,01) in the presence of PC / DSPC:Cholesterol (16:0; 16:4 µM); thus reducing digoxin efflux via P-glycoprotein. In contrast, PC:ChoJesterol (16:0; 16:4 µM) significantly (p < 0.01) decreased propranolol uptake via the passive transcellular route. Bi-directional transport of propranolol was significantly (p < 0,01) decreased in the presence of PC/DSPC:Cholesterol (16:0; 16:4 µM). The structure of a solute is an important determinant for the incorporation and release of a solute from liposome formulations. PC, DSPC and cholesterol liposome formulations are nontoxic towards Caco-2 cell monolayers and improved uptake and transport of mannitol, glutamine. and digoxin across Caco-2 cell monolayers; thus providing a potential alternative delivery vehicle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principal aim of this work was to examine the effects of antiepileptic drugs (AEDs) on vision. Vigabatrin acts by increasing GABA at brain inhibitory synapses by irreversibly binding to GABA-transaminase. Remacemide is a novel non-competitive NMDA receptor antagonist and fast sodium channel inhibitor that results in the inhibition of the NMDA receptors located in the neuronal membrane calcium channels increasing glutamate in the brain. Vigabatrin has been shown to cause a specific pattern of visual field loss, as one in three adults taking vigabatrin have shown a bilateral concentric constriction. Remacemide has unknown effects on vision. The majority of studies of the effects of AEDs on vision have not included the paediatric population due to difficulties assessing visual field function using standard perimetry testing. Evidently an alternative test is required to establish and monitor visual field problems associated with AEDs both in children and in adults who cannot comply with perimetry. In order to test paediatric patients exposed to vigabatrin, a field-specific visual evoked potential was developed. Other tests performed on patients taking either vigabatrin or remacemide were electroretinograms, electro-oculograms, multifocal VEPs and perimetry. Comparing these tests to perimetry results from vigabatrin patients the field specific VEP was found to have a high sensitivity and specificity, as did the 30Hz flicker amplitude. The modified VEP was also found to provide useful results in vigabatrin patients. Remacemide did not produce a similar visual field loss to vigabatrin although macular vision was affected. The field specific VEP is a useful method for detecting vigabatrin associated visual field loss that is well tolerated by young children. This technique combined with the ERG under light adapted (30Hz flicker) condition is presently the superior method for detecting vigabatrin-attributed peripheral field defects present in children below the developmental age of 9. The effects of AEDs on vision should be monitored carefully and the use of multifocal stimulation allows for specific areas of the retina and visual pathway to be monitored.