10 resultados para Drug-alcohol interactions.
em Aston University Research Archive
Resumo:
The primary aim of this research has been the investigation of the role of water structuring effects in the widely different extents of irritancy displayed by certain antibiotics. The compounds involved were members of the Lincomycin group of antibiotics. The aqueous solution behaviour of these co~pounds was studied using techniques such as vapour pressure osmometry end differential scanning calorimetry (D.S.C.). The effects of the antibiotics on water structure in hydrogel membrane preparations In which the equilibrium water content (E.W.C.) and constituent amounts of freezing and non-freezing water ware varied were also investigated using D.S.C. The permeability of water swollen hydrogel preparations to aqueous antibiotic solutions as well as other solutes were studied. A series of hydrogel preparations into which the antibiotics had been incorporated during polymerisation were developed and used in studies of the effects of the antibiotics end their water structure modifications on the permeation of a range of solutes.
Resumo:
Signal integration determines cell fate on the cellular level, affects cognitive processes and affective responses on the behavioural level, and is likely to be involved in psychoneurobiological processes underlying mood disorders. Interactions between stimuli may subjected to time effects. Time-dependencies of interactions between stimuli typically lead to complex cell responses and complex responses on the behavioural level. We show that both three-factor models and time series models can be used to uncover such time-dependencies. However, we argue that for short longitudinal data the three factor modelling approach is more suitable. In order to illustrate both approaches, we re-analysed previously published short longitudinal data sets. We found that in human embryonic kidney 293 cells cells the interaction effect in the regulation of extracellular signal-regulated kinase (ERK) 1 signalling activation by insulin and epidermal growth factor is subjected to a time effect and dramatically decays at peak values of ERK activation. In contrast, we found that the interaction effect induced by hypoxia and tumour necrosis factor-alpha for the transcriptional activity of the human cyclo-oxygenase-2 promoter in HEK293 cells is time invariant at least in the first 12-h time window after stimulation. Furthermore, we applied the three-factor model to previously reported animal studies. In these studies, memory storage was found to be subjected to an interaction effect of the beta-adrenoceptor agonist clenbuterol and certain antagonists acting on the alpha-1-adrenoceptor / glucocorticoid-receptor system. Our model-based analysis suggests that only if the antagonist drug is administer in a critical time window, then the interaction effect is relevant.
Resumo:
An uptake system was developed using Caco-2 cell monolayers and the dipeptide, glycyl-[3H]L-proline, as a probe compound. Glycyl-[3H]L-proline uptake was via the di-/tripeptide transport system (DTS) and, exhibited concentration-, pH- and temperature-dependency. Dipeptides inhibited uptake of the probe, and the design of the system allowed competitors to be ranked against one another with respect to affinity for the transporter. The structural features required to ensure or increase interaction with the DTS were defined by studying the effect of a series of glycyl-L-proline and angiotensin-converting enzyme (ACE)-inhibitor (SQ-29852) analogues on the uptake of the probe. The SQ-29852 structure was divided into six domains (A-F) and competitors were grouped into series depending on structural variations within specific regions. Domain A was found to prefer a hydrophobic function, such as a phenyl group, and was intolerant to positive charges and H+ -acceptors and donors. SQ-29852 analogues were more tolerant of substitutions in the C domain, compared to glycyl-L-proline analogues, suggesting that interactions along the length of the SQ-29852 molecule may override the effects of substitutions in the C domain. SQ-29852 analogues showed a preference for a positive function, such as an amine group in this region, but dipeptide structures favoured an uncharged substitution. Lipophilic substituents in domain D increased affinity of SQ-29852 analogues with the DTS. A similar effect was observed for ACE-NEP inhibitor analogues. Domain E, corresponding to the carboxyl group was found to be tolerant of esterification for SQ-29852 analogues but not for dipeptides. Structural features which may increase interaction for one series of compounds, may not have the same effect for another series, indicating that the presence of multiple recognition sites on a molecule may override the deleterious effect of anyone change. Modifying current, poorly absorbed peptidomimetic structures to fit the proposed hypothetical model may improve oral bioavailability by increasing affinity for the DTS. The stereochemical preference of the transporter was explored using four series of compounds (SQ-29852, lysylproline, alanylproline and alanylalanine enantiomers). The L, L stereochemistry was the preferred conformation for all four series, agreeing with previous studies. However, D, D enantiomers were shown in some cases to be substrates for the DTS, although exhibiting a lower affinity than their L, L counterparts. All the ACE-inhibitors and β-lactam antibiotics investigated, produced a degree of inhibition of the probe, and thus show some affinity for the DTS. This contrasts with previous reports that found several ACE inhibitors to be absorbed via a passive process, thus suggesting that compounds are capable of binding to the transporter site and inhibiting the probe without being translocated into the cell. This was also shown to be the case for oligodeoxynucleotide conjugated to a lipophilic group (vitamin E), and highlights the possibility that other orally administered drug candidates may exert non-specific effects on the DTS and possibly have a nutritional impact. Molecular modelling of selected ACE-NEP inhibitors revealed that the three carbonyl functions can be oriented in a similar direction, and this conformation was found to exist in a local energy-minimised state, indicating that the carbonyls may possibly be involved in hydrogen-bond formation with the binding site of the DTS.
Resumo:
Topical and transdermal formulations are promising platforms for the delivery of drugs. A unit dose topical or transdermal drug delivery system that optimises the solubility of drugs within the vehicle provides a novel dosage form for efficacious delivery that also offers a simple manufacture technique is desirable. This study used Witepsol® H15 wax as a abase for the delivery system. One aspect of this project involved determination of the solubility of ibuprofen, flurbiprofen and naproxen in the was using microscopy, Higuchi release kinetics, HyperDSC and mathematical modelling techniques. Correlations between the results obtained via these techniques were noted with additional merits such as provision of valuable information on drug release kinetics and possible interactions between the drug and excipients. A second aspect of this project involved the incorporation of additional excipients: Tween 20 (T), Carbopol®971 (C) and menthol (M) to the wax formulation. On in vitro permeation through porcine skin, the preferred formulations were: ibuprofen (5% w/w) within Witepsol®H15 + 1% w/w T; flurbiprofen (10% w/w) within Witepsol®H15 + 1% w/w T; naproxen (5% w/w) within Witepsol®H15 + 1% w/w T + 1% C and sodium diclofenac (10% w/w) within Witepsol®H15 + 1% w/w T + 1% w/w T + 1% w/w C + 5% w/w M. Unit dose transdermal tablets containing ibuprofen and diclofenac were produced with improved flux compared to marketed products; Voltarol Emugel® demonstrated flux of 1.68x10-3 cm/h compared to 123 x 10-3 cm/h for the optimised product as detailed above; Ibugel Forte® demonstrated a permeation coefficient value of 7.65 x 10-3 cm/h compared to 8.69 x 10-3 cm/h for the optimised product as described above.
Resumo:
Background. This study examined whether alcohol abuse patients are characterized either by enhanced schematic processing of alcohol related cues or by an attentional bias towards the processing of alcohol cues. Method. Abstinent alcohol abusers (N = 25) and non-clinical control participants (N = 24) performed a dual task paradigm in which they had to make an odd/even decision to a centrally presented number while performing a peripherally presented lexical decision task. Stimuli on the lexical decision task comprised alcohol words, neutral words and non-words. In addition, participants completed an incidental recall task for the words presented in the lexical decision task. Results. It was found that, in the presence of alcohol related words, the performance of patients on the odd/even decision task was poorer than in the presence of other stimului. In addition, patients displayed slower lexical decision times for alcohol related words. Both groups displayed better recall for alcohol words than for other stimuli. Conclusions. These results are interpreted as supporting neither model of drug cravings. Rather, it is proposed that, in the presence of alcohol stimuli, alcohol abuse patients display a breakdown in the ability to focus attention.
Resumo:
Peptide-based materials exhibit remarkable supramolecular self-assembling behavior, owing to their overwhelming propensity to from hierarchical structures from a-helices and ß-sheets. Coupling a peptide sequence to a synthetic polymer chain allows greater control over the final physical properties of the supermolecular material. So-called ‘polymer-peptide conjugates’ can be used to create biocompatible hydrogels which are held together by reversible physical interactions. Potentially, the hydrogels can be loaded with aqueous-based drug molecules, which can be injected into targeted sites in the body if they can exhibit a gel-sol-gel transition under application and removal of a shear force. In this review, we introduce this topic to readers new to the field of polymer-peptide conjugates, discussing common synthetic strategies and their self-assembling behavior. The lack of examples of actual drug delivery applications from polymer-peptide conjugates is highlighted in an attempt to incite progress in this area.
Resumo:
Detection and interpretation of adverse signals during preclinical and clinical stages of drug development inform the benefit-risk assessment that determines suitability for use in real-world situations. This review considers some recent signals associated with diabetes therapies, illustrating the difficulties in ascribing causality and evaluating absolute risk, predictability, prevention, and containment. Individual clinical trials are necessarily restricted for patient selection, number, and duration; they can introduce allocation and ascertainment bias and they often rely on biomarkers to estimate long-term clinical outcomes. In diabetes, the risk perspective is inevitably confounded by emergent comorbid conditions and potential interactions that limit therapeutic choice, hence the need for new therapies and better use of existing therapies to address the consequences of protracted glucotoxicity. However, for some therapies, the adverse effects may take several years to emerge, and it is evident that faint initial signals under trial conditions cannot be expected to foretell all eventualities. Thus, as information and experience accumulate with time, it should be accepted that benefit-risk deliberations will be refined, and adjustments to prescribing indications may become appropriate. © 2013 by the American Diabetes Association.
Resumo:
Recent developments within the National Health Service have led to an increase in personnel 'qualified' to prescribe a wide range of pharmacological agents. A short (38-day) Continuing Professional Development course in prescribing is deemed adequate to fully train individuals for practice. A sound understanding of prescribing medicines has important implications for patient benefit. For example, a prescriber would require some knowledge of drug absorption, distribution, metabolism and excretion, as well as aspects of drug delivery and drug-drug interactions. Drug metabolism in particular exerts a powerful influence on drug action; this can range from complete failure of efficacy through to life-threatening toxicity. Moreover, it is conservatively estimated that there may be several thousand deaths each year in the UK arising from an inadequate knowledge of drug metabolism when prescribing medicines. This one-day course focused on the importance of understanding drug metabolism on treatment strategies and outcomes, and was accessed by a range of healthcare professionals in the West Midlands area of the UK. © 2007 Informa UK Ltd.
Resumo:
The poor retention and efficacy of instilled drops as a means of delivering drugs to the ophthalmic environment is well-recognised. The potential value of contact lenses as a means of ophthalmic drug delivery, and consequent improvement of pre-corneal retention is one obvious route to the development of a more effective ocular delivery system. Furthermore, the increasing availability and clinical use of daily disposable contact lenses provides the platform for the development of viable single-day use drug delivery devices based on existing materials and lenses. In order to provide a basis for the effective design of such devices, a systematic understanding of the factors affecting the interaction of individual drugs with the lens matrix is required. Because a large number of potential structural variables are involved, it is necessary to achieve some rationalisation of the parameters and physicochemical properties (such as molecular weight, charge, partition coefficients) that influence drug interactions. Ophthalmic dyes and structurally related compounds based on the same core structure were used to investigate these various factors and the way in which they can be used in concert to design effective release systems for structurally different drugs. Initial studies of passive diffusional release form a necessary precursor to the investigation of the features of the ocular environment that over-ride this simple behaviour. Commercially available contact lenses of differing structural classifications were used to study factors affecting the uptake of the surrogate actives and their release under 'passive' conditions. The interaction between active and lens material shows considerable and complex structure dependence, which is not simply related to equilibrium water content. The structure of the polymer matrix itself was found to have the dominant controlling influence on active uptake; hydrophobic interaction with the ophthalmic dye playing a major role. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Resumo:
Abstract Various lubricating body fluids at tissue interfaces are composed mainly of combinations of phospholipids and amphipathic apoproteins. The challenge in producing synthetic replacements for them is not replacing the phospholipid, which is readily available in synthetic form, but replacing the apoprotein component, more specifically, its unique biophysical properties rather than its chemistry. The potential of amphiphilic reactive hypercoiling behaviour of poly(styrene-alt-maleic acid) (PSMA) was studied in combination with two diacylphosphatidylcholines (PC) of different chain lengths in aqueous solution. The surface properties of the mixtures were characterized by conventional Langmuir-Wilhelmy balance (surface pressure under compression) and the du Noüy tensiometer (surface tension of the non-compressed mixtures). Surface tension values and 31P NMR demonstrated that self-assembly of polymer-phospholipid mixtures were pH and concentration-dependent. Finally, the particle size and zeta potential measurements of this self-assembly showed that it can form negatively charged nanosized structures that might find use as drug or lipids release systems on interfaces such as the tear film or lung interfacial layers. The structural reorganization was sensitive to the alkyl chain length of the PC.