8 resultados para Drilling and boring machinery

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Cochleostomy formation is a key stage of the cochlear implantation procedure. Minimizing the trauma sustained by the cochlea during this step is thought to be a critical feature in hearing preservation cochlear implantation. The aim of this paper is firstly, to assess the cochlea disturbances during manual and robotic cochleostomy formation. Secondly, to determine whether the use of a smart micro-drill is feasible during human cochlear implantation. Materials and methods: The disturbances within the cochlea during cochleostomy formation were analysed in a porcine specimen by creating a third window cochleostomy, preserving the underlying endosteal membrane, on the anterior aspect of the basal turn of the cochlea. A laser vibrometer was aimed at this third window, to assess its movement while a traditional cochleostomy was performed. Six cochleostomies were performed in total, three manually and three with a smart micro-drill. The mean and peak membrane movement was calculated for both manual and smart micro-drill arms, to represent the disturbances sustained within cochlea during cochleostomy formation. The smart micro-drill was further used to perform live human robotic cochleostomies on three adult patients who met the National Institute of Health and Clinical Excellence criteria for undergoing cochlear implantation. Results: In the porcine trial, the smart micro-drill preserved the endosteal membrane in all three cases. The velocity of movement of the endosteal membrane during manual cochleostomy is approximately 20 times higher on average and 100 times greater in peak velocity, than for robotic cochleostomy. The robot was safely utilized in theatre in all three cases and successfully created a bony cochleostomy while preserving the underlying endosteal membrane. Conclusions: Our experiments have revealed that controlling the force of drilling during cochleostomy formation and opening the endosteal membrane with a pick will minimize the trauma sustained by the cochlea by a factor of 20. Additionally, the smart micro-drill can safely perform a bony cochleostomy in humans under operative conditions and preserve the integrity of the underlying endosteal membrane. © W. S. Maney & Son Ltd 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developing a means of predicting tool life has been and continues to be a focus of much research effort. A common experience in attempting to replicate such efforts is an inability to achieve the levels of agreement between theory and practice of the original researcher or to extrapolate the work to different materials or cutting conditions to those originally used. This thesis sets out to examine why most equations or models when replicated do not give good agreements. One reason which was found is that researchers in wear prediction, their predictions are limited because they generally fail to properly identify the nature of wear mechanisms operative in their study. Also they fail to identify or recognise factors having a significant influence on wear such as bar diameter. Also in this research the similarities and differences between the two processes of single point turning and drilling are examined through a series of tests. A literature survey was undertaken in wear and wear prediction. As a result it was found that there was a paucity in information and research in the work of drilling as compared to the turning operation. This was extended to the lack of standards that exist for the drilling operation. One reason for this scarcity in information on drilling is due to the complexity of the drilling and the tool geometry of the drill. In the comparative drilling and turning tests performed in this work, the same tool material; HSS, and similar work material was used in order to eliminate the differences which may occur due to this factor. Results of the tests were evaluated and compared for the two operations and SEM photographs were taken for the chips produced. Specific test results were obtained for the cutting temperatures and forces of the tool. It was found that cutting temperature is influenced by various factors like tool geometry and cutting speed, and the temperature itself influenced the tool wear and wear mechanisms that act on the tool. It was found and proven that bar diameter influences the temperature, a factor not considered previously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Productivity growth has long been associated with, among other things, contestability of markets which, in turn, is dependent on the ease with which potential competitors to the incumbent firms can enter the product market. There is a growing consensus that in emerging markets regulatory and institutional factors may have a greater influence on a firm's ability to enter a product market than strategic positions adopted by the incumbent firms. We examine this proposition in the context of India where the industrial policies of the 1980s and the 1990s are widely believed to be pro-incumbent and pro-competition, respectively, thereby providing the setting for a natural experiment with 1991 as the watershed year. In our analysis, we also take into consideration the possibility that the greater economic federalism associated with the reforms of the 1990s may have affected the distribution of industrial units across states after 1991. Our paper, which uses the experiences of the textiles and electrical machinery sectors during the two decades as the basis for the analysis, finds broad support for both these hypotheses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The paper assesses the extent to which China’s comparative advantage in manufacturing has shifted towards higher-tech sectors between 1987 and 2005 and proposes possible explanations for the shift. Design/methodology/approach – Revealed comparative advantage (RCA) indices for 27 product groups, representing high-, medium and low-tech sectors have been calculated. Examination of international market attractiveness complements the RCA analysis. Findings for selected sectors are evaluated in the context of other evidence. Findings – While China maintains its competitiveness in low-tech labour intensive products, it has gained RCA in selected medium-tech sectors (e.g. office machines and electric machinery) and the high-tech telecommunications and automatic data processing equipment sectors. Evidence from firm and sector specific studies suggests that improved comparative advantage in medium and high-tech sectors is based on capabilities developing through combining international technology transfer and learning. Research limitations/implications – The quantitative analysis does not explain the shifts in comparative advantage, though the paper suggests possible explanations. Further research at firm and sector levels is required to understand the underlying capability development of Chinese enterprises and the relative competitiveness of Chinese and foreign invested enterprises. Practical implications – Western companies should take account of capability development in China in forming their international manufacturing strategies. The rapid shifts in China’s comparative advantage have lessons for other industrialising countries. Originality/value – While RCA is a well-known methodology, its application at the disaggregated product group level combined with market attractiveness assessment is distinctive. The paper provides a broad assessment of changes in Chinese manufacturing as a basis for further research on capability development at firm and sector levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with the means by which the state in Britain has attempted to influence the technological development of private industry in the period 1945-1979. Particular emphasis is laid on assessing the abilities of technology policy measures to promote innovation. With that objective, the innovation literature is selectively reviewed to draw up an analytical framework to evaluate the innovation content of policy (Chapter 2). Technology policy is taken to consist of the specific measures utilised by government and its agents that affect the technological behaviour of firms. The broad sweep of policy during the period under consideration is described in Chapter 3 which concentrates on elucidating its institutional structure and the activities of the bodies involved. The empirical core of the thesis consists of three parallel case studies of policy toward the computer, machine tool and textile machinery industries (Chapters 4-6). The studies provide detailed historical accounts of the development and composition of policy, relating it to its specific institutional and industrial contexts. Each reveals a different pattern and level of state intervention. The thesis concludes with a comparative review of the findings of the case studies within a discussion centred on the arguments presented in Chapter 2. Topics arising include the state's differential support for the range of activities involved in innovation, the location of state-funded R&D, the encouragement of supplier-user contact, and the difficulties raised in adoption and diffusion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deep hole drilling is one of the most complicated metal cutting processes and one of the most difficult to perform on CNC machine-tools or machining centres under conditions of limited manpower or unmanned operation. This research work investigates aspects of the deep hole drilling process with small diameter twist drills and presents a prototype system for real time process monitoring and adaptive control; two main research objectives are fulfilled in particular : First objective is the experimental investigation of the mechanics of the deep hole drilling process, using twist drills without internal coolant supply, in the range of diarneters Ø 2.4 to Ø4.5 mm and working length up to 40 diameters. The definition of the problems associated with the low strength of these tools and the study of mechanisms of catastrophic failure which manifest themselves well before and along with the classic mechanism of tool wear. The relationships between drilling thrust and torque with the depth of penetration and the various machining conditions are also investigated and the experimental evidence suggests that the process is inherently unstable at depths beyond a few diameters. Second objective is the design and implementation of a system for intelligent CNC deep hole drilling, the main task of which is to ensure integrity of the process and the safety of the tool and the workpiece. This task is achieved by means of interfacing the CNC system of the machine tool to an external computer which performs the following functions: On-line monitoring of the drilling thrust and torque, adaptive control of feed rate, spindle speed and tool penetration (Z-axis), indirect monitoring of tool wear by pattern recognition of variations of the drilling thrust with cumulative cutting time and drilled depth, operation as a data base for tools and workpieces and finally issuing of alarms and diagnostic messages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Traditional machinery for manufacturing processes are characterised by actuators powered and co-ordinated by mechanical linkages driven from a central drive. Increasingly, these linkages are replaced by independent electrical drives, each performs a different task and follows a different motion profile, co-ordinated by computers. A design methodology for the servo control of high speed multi-axis machinery is proposed, based on the concept of a highly adaptable generic machine model. In addition to the dynamics of the drives and the loads, the model includes the inherent interactions between the motion axes and thus provides a Multi-Input Multi-Output (MIMO) description. In general, inherent interactions such as structural couplings between groups of motion axes are undesirable and needed to be compensated. On the other hand, imposed interactions such as the synchronisation of different groups of axes are often required. It is recognised that a suitable MIMO controller can simultaneously achieve these objectives and reconciles their potential conflicts. Both analytical and numerical methods for the design of MIMO controllers are investigated. At present, it is not possible to implement high order MIMO controllers for practical reasons. Based on simulations of the generic machine model under full MIMO control, however, it is possible to determine a suitable topology for a blockwise decentralised control scheme. The Block Relative Gain array (BRG) is used to compare the relative strength of closed loop interactions between sub-systems. A number of approaches to the design of the smaller decentralised MIMO controllers for these sub-systems has been investigated. For the purpose of illustration, a benchmark problem based on a 3 axes test rig has been carried through the design cycle to demonstrate the working of the design methodology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis describes the design and development of an autonomous micro-drilling system capable of accurately controlling the penetration of complaint tissues and its application to the drilling of the cochleostomy; a key stage in the cochlea implant procedure. The drilling of the cochleostomy is a precision micro-surgical task in which the control of the burr penetration through the outer bone tissue of the cochlea is vital to prevent damage to the structures within and requires a high degree of skill to perform successfully. The micro-drilling system demonstrates that the penetration of the cochlea can be achieved consistently and accurately. Breakthrough can be detected and controlled to within 20µm of the distal surface and the hole completed without perforation of the underlying endosteal membrane, leaving the membranous cochlea intact. This device is the first autonomous surgical tool successfully deployed in the operating theatre. The system is unique due to the way in which it uses real-time data from the cutting tool to derive the state of the tool-tissue interaction. Being a smart tool it uses this state information to actively control the way in which the drilling process progresses. This sensor guided strategy enables the tool to self-reference to the deforming tissue and navigate without the need for pre-operative scan data. It is this capability that enables the system to operate in circumstances where the tissue properties and boundary conditions are unknown, without the need to restrain the patient.