5 resultados para Drb1 Allele
em Aston University Research Archive
Resumo:
Adherence of pathogenic Escherichia coli and Salmonella spp. to host cells is in part mediated by curli fimbriae which, along with other virulence determinants, are positively regulated by RpoS. Interested in the role and regulation of curli (SEF17) fimbriae of Salmonella enteritidis in poultry infection, we tested the virulence of naturally occurring S. enteritidis PT4 strains 27655R and 27655S which displayed constitutive and null expression of curli (SEF17) fimbriae, respectively, in a chick invasion assay and analysed their rpoS alleles. Both strains were shown to be equally invasive and as invasive as a wild-type phage type 4 strain and an isogenic derivative defective for the elaboration of curli. We showed that the rpoS allele of 27655S was intact even though this strain was non-curliated and we confirmed that a S. enteritidis rpoS::strr null mutant was unable to express curli, as anticipated. Strain 27655R, constitutively curliated, possessed a frameshift mutation at position 697 of the rpoS coding sequence which resulted in a truncated product and remained curliated even when transduced to rpoS::strr. Additionally, rpoS mutants are known to be cold-sensitive, a phenotype confirmed for strain 27655R. Collectively, these data indicated that curliation was not a significant factor for pathogenesis of S. enteritidis in this model and that curliation of strains 27655R and 27655S was independent of RpoS. Significantly, strain 27655R possessed a defective rpoS allele and remained virulent. Here was evidence that supported the concept that different naturally occurring rpoS alleles may generate varying virulence phenotypic traits.
Resumo:
MHC class II proteins bind oligopeptide fragments derived from proteolysis of pathogen antigens, presenting them at the cell surface for recognition by CD4+ T cells. Human MHC class II alleles are grouped into three loci: HLA-DP, HLA-DQ and HLA-DR. In contrast to HLA-DR and HLA-DQ, HLA-DP proteins have not been studied extensively, as they have been viewed as less important in immune responses than DRs and DQs. However, it is now known that HLA-DP alleles are associated with many autoimmune diseases. Quite recently, the X-ray structure of the HLA-DP2 molecule (DPA*0103, DPB1*0201) in complex with a self-peptide derived from the HLA-DR a-chain has been determined. In the present study, we applied a validated molecular docking protocol to a library of 247 modelled peptide-DP2 complexes, seeking to assess the contribution made by each of the 20 naturally occurred amino acids at each of the nine binding core peptide positions and the four flanking residues (two on both sides).
Resumo:
Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made are freely available online at the URL http://www.jenner.ac.uk/MHCPred.
Resumo:
A proteochemometrics approach was applied to a set of 2666 peptides binding to 12 HLA-DRB1 proteins. Sequences of both peptide and protein were described using three z-descriptors. Cross terms accounting for adjacent positions and for every second position in the peptides were included in the models, as well as cross terms for peptide/protein interactions. Models were derived based on combinations of different blocks of variables. These models had moderate goodness of fit, as expressed by r2, which ranged from 0.685 to 0.732; and good cross-validated predictive ability, as expressed by q2, which varied from 0.678 to 0.719. The external predictive ability was tested using a set of 356 HLA-DRB1 binders, which showed an r2(pred) in the range 0.364-0.530. Peptide and protein positions involved in the interactions were analyzed in terms of hydrophobicity, steric bulk and polarity.