10 resultados para Domain Ontology

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evaluation of ontologies is vital for the growth of the Semantic Web. We consider a number of problems in evaluating a knowledge artifact like an ontology. We propose in this paper that one approach to ontology evaluation should be corpus or data driven. A corpus is the most accessible form of knowledge and its use allows a measure to be derived of the ‘fit’ between an ontology and a domain of knowledge. We consider a number of methods for measuring this ‘fit’ and propose a measure to evaluate structural fit, and a probabilistic approach to identifying the best ontology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ontologies have become a key component in the Semantic Web and Knowledge management. One accepted goal is to construct ontologies from a domain specific set of texts. An ontology reflects the background knowledge used in writing and reading a text. However, a text is an act of knowledge maintenance, in that it re-enforces the background assumptions, alters links and associations in the ontology, and adds new concepts. This means that background knowledge is rarely expressed in a machine interpretable manner. When it is, it is usually in the conceptual boundaries of the domain, e.g. in textbooks or when ideas are borrowed into other domains. We argue that a partial solution to this lies in searching external resources such as specialized glossaries and the internet. We show that a random selection of concept pairs from the Gene Ontology do not occur in a relevant corpus of texts from the journal Nature. In contrast, a significant proportion can be found on the internet. Thus, we conclude that sources external to the domain corpus are necessary for the automatic construction of ontologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automatic ontology building is a vital issue in many fields where they are currently built manually. This paper presents a user-centred methodology for ontology construction based on the use of Machine Learning and Natural Language Processing. In our approach, the user selects a corpus of texts and sketches a preliminary ontology (or selects an existing one) for a domain with a preliminary vocabulary associated to the elements in the ontology (lexicalisations). Examples of sentences involving such lexicalisation (e.g. ISA relation) in the corpus are automatically retrieved by the system. Retrieved examples are validated by the user and used by an adaptive Information Extraction system to generate patterns that discover other lexicalisations of the same objects in the ontology, possibly identifying new concepts or relations. New instances are added to the existing ontology or used to tune it. This process is repeated until a satisfactory ontology is obtained. The methodology largely automates the ontology construction process and the output is an ontology with an associated trained leaner to be used for further ontology modifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigates the process of selecting, extracting and reorganizing content from Semantic Web information sources, to produce an ontology meeting the specifications of a particular domain and/or task. The process is combined with traditional text-based ontology learning methods to achieve tolerance to knowledge incompleteness. The paper describes the approach and presents experiments in which an ontology was built for a diet evaluation task. Although the example presented concerns the specific case of building a nutritional ontology, the methods employed are domain independent and transferrable to other use cases. © 2011 ACM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite years of effort in building organisational taxonomies, the potential of ontologies to support knowledge management in complex technical domains is under-exploited. The authors of this chapter present an approach to using rich domain ontologies to support sense-making tasks associated with resolving mechanical issues. Using Semantic Web technologies, the authors have built a framework and a suite of tools which support the whole semantic knowledge lifecycle. These are presented by describing the process of issue resolution for a simulated investigation concerning failure of bicycle brakes. Foci of the work have included ensuring that semantic tasks fit in with users’ everyday tasks, to achieve user acceptability and support the flexibility required by communities of practice with differing local sub-domains, tasks, and terminology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show a new method for term extraction from a domain relevant corpus using natural language processing for the purposes of semi-automatic ontology learning. Literature shows that topical words occur in bursts. We find that the ranking of extracted terms is insensitive to the choice of population model, but calculating frequencies relative to the burst size rather than the document length in words yields significantly different results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing use of a variety of information systems in crisis management both by non-governmental organizations (NGOs) and emergency management agencies makes the challenges of information sharing and interoperability increasingly important. The use of semantic web technologies is a growing area and is a technology stack specifically suited to these challenges. This paper presents a review of ontologies, vocabularies and taxonomies that are useful in crisis management systems. We identify the different subject areas relevant to crisis management based on a review of the literature. The different ontologies and vocabularies available are analysed in terms of their coverage, design and usability. We also consider the use cases for which they were designed and the degree to which they follow a variety of standards. While providing comprehensive ontologies for the crisis domain is not feasible or desirable there is considerable scope to develop ontologies for the subject areas not currently covered and for the purposes of interoperability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ontology construction for any domain is a labour intensive and complex process. Any methodology that can reduce the cost and increase efficiency has the potential to make a major impact in the life sciences. This paper describes an experiment in ontology construction from text for the animal behaviour domain. Our objective was to see how much could be done in a simple and relatively rapid manner using a corpus of journal papers. We used a sequence of pre-existing text processing steps, and here describe the different choices made to clean the input, to derive a set of terms and to structure those terms in a number of hierarchies. We describe some of the challenges, especially that of focusing the ontology appropriately given a starting point of a heterogeneous corpus. Results - Using mainly automated techniques, we were able to construct an 18055 term ontology-like structure with 73% recall of animal behaviour terms, but a precision of only 26%. We were able to clean unwanted terms from the nascent ontology using lexico-syntactic patterns that tested the validity of term inclusion within the ontology. We used the same technique to test for subsumption relationships between the remaining terms to add structure to the initially broad and shallow structure we generated. All outputs are available at http://thirlmere.aston.ac.uk/~kiffer/animalbehaviour/ webcite. Conclusion - We present a systematic method for the initial steps of ontology or structured vocabulary construction for scientific domains that requires limited human effort and can make a contribution both to ontology learning and maintenance. The method is useful both for the exploration of a scientific domain and as a stepping stone towards formally rigourous ontologies. The filtering of recognised terms from a heterogeneous corpus to focus upon those that are the topic of the ontology is identified to be one of the main challenges for research in ontology learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ontology construction for any domain is a labour intensive and complex process. Any methodology that can reduce the cost and increase efficiency has the potential to make a major impact in the life sciences. This paper describes an experiment in ontology construction from text for the Animal Behaviour domain. Our objective was to see how much could be done in a simple and rapid manner using a corpus of journal papers. We used a sequence of text processing steps, and describe the different choices made to clean the input, to derive a set of terms and to structure those terms in a hierarchy. We were able in a very short space of time to construct a 17000 term ontology with a high percentage of suitable terms. We describe some of the challenges, especially that of focusing the ontology appropriately given a starting point of a heterogeneous corpus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ontology engineering research community has focused for many years on supporting the creation, development and evolution of ontologies. Ontology forecasting, which aims at predicting semantic changes in an ontology, represents instead a new challenge. In this paper, we want to give a contribution to this novel endeavour by focusing on the task of forecasting semantic concepts in the research domain. Indeed, ontologies representing scientific disciplines contain only research topics that are already popular enough to be selected by human experts or automatic algorithms. They are thus unfit to support tasks which require the ability of describing and exploring the forefront of research, such as trend detection and horizon scanning. We address this issue by introducing the Semantic Innovation Forecast (SIF) model, which predicts new concepts of an ontology at time t + 1, using only data available at time t. Our approach relies on lexical innovation and adoption information extracted from historical data. We evaluated the SIF model on a very large dataset consisting of over one million scientific papers belonging to the Computer Science domain: the outcomes show that the proposed approach offers a competitive boost in mean average precision-at-ten compared to the baselines when forecasting over 5 years.