8 resultados para Doença de Fabry
em Aston University Research Archive
Resumo:
We report on inscription of microchannels of different widths in optical fiber using femtosecond (fs) laser inscription assisted chemical etching and the narrowest channel has been created with a width down to only 1.2µm. Microchannels with 5µm and 35µm widths were fabricated together with Fabry-Pérot (FP) cavities formed by UV laser written fiber Bragg gratings (FBGs), creating high function and linear response refractometers. The device with a 5µm microchannel has exhibited a refractive index (RI) detection range up to 1.7, significantly higher than all fiber grating RI sensors. In addition, the microchannel FBG FP structures have been theoretically simulated showing excellent agreement with experimental measured characteristics.
Resumo:
Wavelength-locking of a multiwavelength stabilized slotted Fabry-Perot (SFP) laser to a single-mode laser source is experimentally demonstrated. The SFP resonates at channels spaced by similar to 8 nm between 1510 and 1565 nm over a wide range of temperatures and drive currents. Under low-power (<- 20 dBm) external optical injection, wavelength-locking with a sidemode suppression ratio (SMSR) > 25 dB is achieved. A locking width of > 25 GHz and SMSR > 30 dB can be achieved for each locked wavelength channel at injection power > - 16 dBm.
Resumo:
Characteristics of fiber Bragg grating based Fabry-Perot (FBG-FP) structures under transversal loading are investigated. A novel switchable multi-wavelength fiber laser employing loaded FBG-FP is also demonstrated. © 2012 OSA.
Resumo:
Hybrid WDM/TDM enabled microstructure based optical fiber sensor network with large capacity is proposed. Assisted by Fabry-Perot filter, the demodulation system with high speed of 500Hz and high wavelength resolution less than 4.91pm is realized. © OSA 2015.
Resumo:
Opto-Acoustic Endoscopy (OAE) requires sensors with a high sensitivity and small physical dimensions in order to facilitate integration into an endoscope of less than 1mm in diameter. We present fibre Bragg grating (FBG) and Fabry- Perot intrinsic fibre sensors for ultrasound detection. We present a structure profile characterisation setup to analyse tune the fibre sensors in preparation for ultrasonic detection. We evaluate the suitability of the different structures and grating parameters for ultrasonic sensing. By analysing the prepared gratings, we enable the optimisation of the profile and a simplification of the detection regime for an optimal interferometric OAE configuration.
Resumo:
We propose and demonstrate a microfiber Fabry-Perot interferometer (MFPI) fabricated by taper-drawing microfiber at the center of a uniform fiber Bragg grating (FBG). The MFPI employing the two separated sections of FBG as reflectors and a length of microfiber as its cavity is derived. Theoretic study shows that the reflection spectrum of such MFPI is consisted of two parts-interference fringes induced by multi-beam interference and reflection spectrum envelope induced by FBGs. Temperature affects both interference fringes and reflection wavelength of FBGs while ambient refractive index (RI) only influences the interference fringes, i.e., MFPI has different response to temperature and RI. Therefore, MFPI for simultaneous sensing of RI and temperature is experimentally demonstrated by tracking a reflection peak of interference fringes and the Bragg wavelength of the FBGs, which are respectively assisted by frequency domain processing and Gaussian fitting of the optical spectrum. Consequently, wavelength measurement resolution of 0.5 pm is realized. © 1983-2012 IEEE.
Resumo:
We report a linear response optical refractive index (RI) sensor, which is fabricated based on a micro-channel created within a Fabry Perot (F-P) cavity by chemical etching assisted by femtosecond laser inscription. The experimental results show the F-P resonance peak has a linear response with the RI of medium and the measuring sensitivity is proportion to the length of micro-channel. The sensor with 5 μm -long micro-channel exhibited an RI sensitivity of 1.15nm/RIU and this sensitivity increased to 9.08nm/RIU when widening the micro-channel to 35μm. Furthermore, such micro-channel FP sensors show a much broader RI sensing dynamic range (from 1.3 to 1.7) than other reported optical fiber sensors. © 2012 SPIE.
Resumo:
The stress sensitivity of polymer optical fibre (POF) based Fabry-Perot sensors formed by two uniform Bragg gratings with finite dimensions is investigated. POF has received high interest in recent years due to its different material properties compared to its silica counterpart. Biocompatibility, a higher failure strain and the highly elastic nature of POF are some of the main advantages. The much lower Young’s modulus of polymer materials compared to silica offers enhanced stress sensitivity to POF based sensors which renders them great candidates for acoustic wave receivers and any kind of force detection. The main drawback in POF technology is perhaps the high fibre loss. In a lossless fibre the sensitivity of an interferometer is proportional to its cavity length. However, the presence of the attenuation along the optical path can significantly reduce the finesse of the Fabry-Perot interferometer and it can negatively affect its sensitivity at some point. The reflectivity of the two gratings used to form the interferometer can be also reduced as the fibre loss increases. In this work, a numerical model is developed to study the performance of POF based Fabry-Perot sensors formed by two uniform Bragg gratings with finite dimensions. Various optical and physical properties are considered such as grating physical length, grating effective length which indicates the point where the light is effectively reflected, refractive index modulation of the grating, cavity length of the interferometer, attenuation and operating wavelength. Using this model, we are able to identify the regimes in which the PMMA based sensor offer enhanced stress sensitivity compared to silica based one.