16 resultados para Document classification,Naive Bayes classifier,Verb-object pairs

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Web APIs have gained increasing popularity in recent Web service technology development owing to its simplicity of technology stack and the proliferation of mashups. However, efficiently discovering Web APIs and the relevant documentations on the Web is still a challenging task even with the best resources available on the Web. In this paper we cast the problem of detecting the Web API documentations as a text classification problem of classifying a given Web page as Web API associated or not. We propose a supervised generative topic model called feature latent Dirichlet allocation (feaLDA) which offers a generic probabilistic framework for automatic detection of Web APIs. feaLDA not only captures the correspondence between data and the associated class labels, but also provides a mechanism for incorporating side information such as labelled features automatically learned from data that can effectively help improving classification performance. Extensive experiments on our Web APIs documentation dataset shows that the feaLDA model outperforms three strong supervised baselines including naive Bayes, support vector machines, and the maximum entropy model, by over 3% in classification accuracy. In addition, feaLDA also gives superior performance when compared against other existing supervised topic models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to identify the communication goal(s) of a user's information-seeking query out of a finite set of within-domain goals in natural language queries. It proposes using Tree-Augmented Naive Bayes networks (TANs) for goal detection. The problem is formulated as N binary decisions, and each is performed by a TAN. Comparative study has been carried out to compare the performance with Naive Bayes, fully-connected TANs, and multi-layer neural networks. Experimental results show that TANs consistently give better results when tested on the ATIS and DARPA Communicator corpora.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identification of humans via ECG is being increasingly studied because it can have several advantages over the traditional biometric identification techniques. However, difficulties arise because of the heartrate variability. In this study we analysed the influence of QT interval correction on the performance of an identification system based on temporal and amplitude features of ECG. In particular we tested MLP, Naive Bayes and 3-NN classifiers on the Fantasia database. Results indicate that QT correction can significantly improve the overall system performance. © 2013 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a novel analysis of the state of the art in object tracking with respect to diversity found in its main component, an ensemble classifier that is updated in an online manner. We employ established measures for diversity and performance from the rich literature on ensemble classification and online learning, and present a detailed evaluation of diversity and performance on benchmark sequences in order to gain an insight into how the tracking performance can be improved. © Springer-Verlag 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The n-tuple recognition method was tested on 11 large real-world data sets and its performance compared to 23 other classification algorithms. On 7 of these, the results show no systematic performance gap between the n-tuple method and the others. Evidence was found to support a possible explanation for why the n-tuple method yields poor results for certain datasets. Preliminary empirical results of a study of the confidence interval (the difference between the two highest scores) are also reported. These suggest a counter-intuitive correlation between the confidence interval distribution and the overall classification performance of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The n-tuple recognition method is briefly reviewed, summarizing the main theoretical results. Large-scale experiments carried out on Stat-Log project datasets confirm this method as a viable competitor to more popular methods due to its speed, simplicity, and accuracy on the majority of a wide variety of classification problems. A further investigation into the failure of the method on certain datasets finds the problem to be largely due to a mismatch between the scales which describe generalization and data sparseness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive a mean field algorithm for binary classification with Gaussian processes which is based on the TAP approach originally proposed in Statistical Physics of disordered systems. The theory also yields an approximate leave-one-out estimator for the generalization error which is computed with no extra computational cost. We show that from the TAP approach, it is possible to derive both a simpler 'naive' mean field theory and support vector machines (SVM) as limiting cases. For both mean field algorithms and support vectors machines, simulation results for three small benchmark data sets are presented. They show 1. that one may get state of the art performance by using the leave-one-out estimator for model selection and 2. the built-in leave-one-out estimators are extremely precise when compared to the exact leave-one-out estimate. The latter result is a taken as a strong support for the internal consistency of the mean field approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aims of the project were twofold: 1) To investigate classification procedures for remotely sensed digital data, in order to develop modifications to existing algorithms and propose novel classification procedures; and 2) To investigate and develop algorithms for contextual enhancement of classified imagery in order to increase classification accuracy. The following classifiers were examined: box, decision tree, minimum distance, maximum likelihood. In addition to these the following algorithms were developed during the course of the research: deviant distance, look up table and an automated decision tree classifier using expert systems technology. Clustering techniques for unsupervised classification were also investigated. Contextual enhancements investigated were: mode filters, small area replacement and Wharton's CONAN algorithm. Additionally methods for noise and edge based declassification and contextual reclassification, non-probabilitic relaxation and relaxation based on Markov chain theory were developed. The advantages of per-field classifiers and Geographical Information Systems were investigated. The conclusions presented suggest suitable combinations of classifier and contextual enhancement, given user accuracy requirements and time constraints. These were then tested for validity using a different data set. A brief examination of the utility of the recommended contextual algorithms for reducing the effects of data noise was also carried out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the important bioinformatics problem of predicting protein function from a protein's primary sequence. We consider the functional classification of G-Protein-Coupled Receptors (GPCRs), whose functions are specified in a class hierarchy. We tackle this task using a novel top-down hierarchical classification system where, for each node in the class hierarchy, the predictor attributes to be used in that node and the classifier to be applied to the selected attributes are chosen in a data-driven manner. Compared with a previous hierarchical classification system selecting classifiers only, our new system significantly reduced processing time without significantly sacrificing predictive accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sentiment analysis has long focused on binary classification of text as either positive or negative. There has been few work on mapping sentiments or emotions into multiple dimensions. This paper studies a Bayesian modeling approach to multi-class sentiment classification and multidimensional sentiment distributions prediction. It proposes effective mechanisms to incorporate supervised information such as labeled feature constraints and document-level sentiment distributions derived from the training data into model learning. We have evaluated our approach on the datasets collected from the confession section of the Experience Project website where people share their life experiences and personal stories. Our results show that using the latent representation of the training documents derived from our approach as features to build a maximum entropy classifier outperforms other approaches on multi-class sentiment classification. In the more difficult task of multi-dimensional sentiment distributions prediction, our approach gives superior performance compared to a few competitive baselines. © 2012 ACM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a novel framework where an initial classifier is learned by incorporating prior information extracted from an existing sentiment lexicon. Preferences on expectations of sentiment labels of those lexicon words are expressed using generalized expectation criteria. Documents classified with high confidence are then used as pseudo-labeled examples for automatical domain-specific feature acquisition. The word-class distributions of such self-learned features are estimated from the pseudo-labeled examples and are used to train another classifier by constraining the model's predictions on unlabeled instances. Experiments on both the movie review data and the multi-domain sentiment dataset show that our approach attains comparable or better performance than exiting weakly-supervised sentiment classification methods despite using no labeled documents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MOTIVATION: G protein-coupled receptors (GPCRs) play an important role in many physiological systems by transducing an extracellular signal into an intracellular response. Over 50% of all marketed drugs are targeted towards a GPCR. There is considerable interest in developing an algorithm that could effectively predict the function of a GPCR from its primary sequence. Such an algorithm is useful not only in identifying novel GPCR sequences but in characterizing the interrelationships between known GPCRs. RESULTS: An alignment-free approach to GPCR classification has been developed using techniques drawn from data mining and proteochemometrics. A dataset of over 8000 sequences was constructed to train the algorithm. This represents one of the largest GPCR datasets currently available. A predictive algorithm was developed based upon the simplest reasonable numerical representation of the protein's physicochemical properties. A selective top-down approach was developed, which used a hierarchical classifier to assign sequences to subdivisions within the GPCR hierarchy. The predictive performance of the algorithm was assessed against several standard data mining classifiers and further validated against Support Vector Machine-based GPCR prediction servers. The selective top-down approach achieves significantly higher accuracy than standard data mining methods in almost all cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work explores the creation of ambiguous images, i.e., images that may induce multistable perception, by evolutionary means. Ambiguous images are created using a general purpose approach, composed of an expression-based evolutionary engine and a set of object detectors, which are trained in advance using Machine Learning techniques. Images are evolved using Genetic Programming and object detectors are used to classify them. The information gathered during classification is used to assign fitness. In a first stage, the system is used to evolve images that resemble a single object. In a second stage, the discovery of ambiguous images is promoted by combining pairs of object detectors. The analysis of the results highlights the ability of the system to evolve ambiguous images and the differences between computational and human ambiguous images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short text messages a.k.a Microposts (e.g. Tweets) have proven to be an effective channel for revealing information about trends and events, ranging from those related to Disaster (e.g. hurricane Sandy) to those related to Violence (e.g. Egyptian revolution). Being informed about such events as they occur could be extremely important to authorities and emergency professionals by allowing such parties to immediately respond. In this work we study the problem of topic classification (TC) of Microposts, which aims to automatically classify short messages based on the subject(s) discussed in them. The accurate TC of Microposts however is a challenging task since the limited number of tokens in a post often implies a lack of sufficient contextual information. In order to provide contextual information to Microposts, we present and evaluate several graph structures surrounding concepts present in linked knowledge sources (KSs). Traditional TC techniques enrich the content of Microposts with features extracted only from the Microposts content. In contrast our approach relies on the generation of different weighted semantic meta-graphs extracted from linked KSs. We introduce a new semantic graph, called category meta-graph. This novel meta-graph provides a more fine grained categorisation of concepts providing a set of novel semantic features. Our findings show that such category meta-graph features effectively improve the performance of a topic classifier of Microposts. Furthermore our goal is also to understand which semantic feature contributes to the performance of a topic classifier. For this reason we propose an approach for automatic estimation of accuracy loss of a topic classifier on new, unseen Microposts. We introduce and evaluate novel topic similarity measures, which capture the similarity between the KS documents and Microposts at a conceptual level, considering the enriched representation of these documents. Extensive evaluation in the context of Emergency Response (ER) and Violence Detection (VD) revealed that our approach outperforms previous approaches using single KS without linked data and Twitter data only up to 31.4% in terms of F1 measure. Our main findings indicate that the new category graph contains useful information for TC and achieves comparable results to previously used semantic graphs. Furthermore our results also indicate that the accuracy of a topic classifier can be accurately predicted using the enhanced text representation, outperforming previous approaches considering content-based similarity measures. © 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Topic classification (TC) of short text messages offers an effective and fast way to reveal events happening around the world ranging from those related to Disaster (e.g. Sandy hurricane) to those related to Violence (e.g. Egypt revolution). Previous approaches to TC have mostly focused on exploiting individual knowledge sources (KS) (e.g. DBpedia or Freebase) without considering the graph structures that surround concepts present in KSs when detecting the topics of Tweets. In this paper we introduce a novel approach for harnessing such graph structures from multiple linked KSs, by: (i) building a conceptual representation of the KSs, (ii) leveraging contextual information about concepts by exploiting semantic concept graphs, and (iii) providing a principled way for the combination of KSs. Experiments evaluating our TC classifier in the context of Violence detection (VD) and Emergency Responses (ER) show promising results that significantly outperform various baseline models including an approach using a single KS without linked data and an approach using only Tweets. Copyright 2013 ACM.