4 resultados para Divisia index

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Linear models reach their limitations in applications with nonlinearities in the data. In this paper new empirical evidence is provided on the relative Euro inflation forecasting performance of linear and non-linear models. The well established and widely used univariate ARIMA and multivariate VAR models are used as linear forecasting models whereas neural networks (NN) are used as non-linear forecasting models. It is endeavoured to keep the level of subjectivity in the NN building process to a minimum in an attempt to exploit the full potentials of the NN. It is also investigated whether the historically poor performance of the theoretically superior measure of the monetary services flow, Divisia, relative to the traditional Simple Sum measure could be attributed to a certain extent to the evaluation of these indices within a linear framework. Results obtained suggest that non-linear models provide better within-sample and out-of-sample forecasts and linear models are simply a subset of them. The Divisia index also outperforms the Simple Sum index when evaluated in a non-linear framework. © 2005 Taylor & Francis Group Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We test for the existence of a long-run money demand relationship for the UK involving household-sector Divisia and simple sum monetary indexes for the period from 1977 to 2008. We construct our Divisia index using non-break-adjusted levels and break-adjusted flows following the Bank of England. We test for cointegration between the real Divisia and simple sum indexes, their corresponding opportunity cost measures, real income and real share prices. Our results support the existence of a long-run money demand relationship for both the Divisia and simple sum indexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare two methods in order to predict inflation rates in Europe. One method uses a standard back propagation neural network and the other uses an evolutionary approach, where the network weights and the network architecture is evolved. Results indicate that back propagation produces superior results. However, the evolving network still produces reasonable results with the advantage that the experimental set-up is minimal. Also of interest is the fact that the Divisia measure of money is superior as a predictive tool over simple sum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper compares two methods to predict in°ation rates in Europe. One method uses a standard back propagation neural network and the other uses an evolutionary approach, where the network weights and the network architecture are evolved. Results indicate that back propagation produces superior results. However, the evolving network still produces reasonable results with the advantage that the experimental set-up is minimal. Also of interest is the fact that the Divisia measure of money is superior as a predictive tool over simple sum.