23 resultados para Distribution network reconfiguration problem
em Aston University Research Archive
Resumo:
Automatic load transfer (ALT) on the 11 kV network is the process by which circuit breakers on the network are switched to form open points in order to feed load from different primary substations. Some of the potential benefits that may be gained from dynamically using ALT include maximising utilisation of existing assets, voltage regulation and reduced losses. One of the key issues, that has yet to be properly addressed in published research, is how to validate that the modelled benefits really exist. On an 11 kV distribution network where the load is continually changing and the load on each distribution substation is unlikely to be monitored - reduction in losses from moving the normally open point is particularly difficult to prove. This study proposes a method to overcome this problem and uses measured primary feeder data from two parts of the Western Power Distribution 11 kV Network under different configurations. The process of choosing the different configurations is based on a heuristic modelling method of locating minimum voltages to help reduce losses.
Resumo:
This paper discusses the potentiality of reconfiguring distribution networks into islanded Microgrids to reduce the network infrastructure reinforcement requirement and incorporate various dispersed energy resources. The major challenge would be properly breaking down the network and its resultant protection and automation system changes. A reconfiguration method is proposed based on allocation of distributed generation resources to fulfil this purpose, with a heuristic algorithm. Cost/reliability data is required for the next stage tasks to realise a case study of a particular network.
Resumo:
Logistics distribution network design is one of the major decision problems arising in contemporary supply chain management. The decision involves many quantitative and qualitative factors that may be conflicting in nature. This paper applies an integrated multiple criteria decision making approach to design an optimal distribution network. In the approach, the analytic hierarchy process (AHP) is used first to determine the relative importance weightings or priorities of alternative warehouses with respect to both deliverer oriented and customer oriented criteria. Then, the goal programming (GP) model incorporating the constraints of system, resource, and AHP priority is formulated to select the best set of warehouses without exceeding the limited available resources. In this paper, two commercial packages are used: Expert Choice for determining the AHP priorities of the warehouses, and LINDO for solving the GP model. © 2007 IEEE.
Resumo:
This paper explores the use of the optimization procedures in SAS/OR software with application to the contemporary logistics distribution network design using an integrated multiple criteria decision making approach. Unlike the traditional optimization techniques, the proposed approach, combining analytic hierarchy process (AHP) and goal programming (GP), considers both quantitative and qualitative factors. In the integrated approach, AHP is used to determine the relative importance weightings or priorities of alternative warehouses with respect to both deliverer oriented and customer oriented criteria. Then, a GP model incorporating the constraints of system, resource, and AHP priority is formulated to select the best set of warehouses without exceeding the limited available resources. To facilitate the use of integrated multiple criteria decision making approach by SAS users, an ORMCDM code was implemented in the SAS programming language. The SAS macro developed in this paper selects the chosen variables from a SAS data file and constructs sets of linear programming models based on the selected GP model. An example is given to illustrate how one could use the code to design the logistics distribution network.
Resumo:
In the contemporary customer-driven supply chain, maximization of customer service plays an equally important role as minimization of costs for a company to retain and increase its competitiveness. This article develops a multiple-criteria optimization approach, combining the analytic hierarchy process (AHP) and an integer linear programming (ILP) model, to aid the design of an optimal logistics distribution network. The proposed approach outperforms traditional cost-based optimization techniques because it considers both quantitative and qualitative factors and also aims at maximizing the benefits of deliverer and customers. In the approach, the AHP is used to determine the relative importance weightings or priorities of alternative warehouses with respect to some critical customer-oriented criteria. The results of AHP prioritization are utilized as the input of the ILP model, the objective of which is to select the best warehouses at the lowest possible cost. In this article, two commercial packages are used: including Expert Choice and LINDO.
Resumo:
Dynamic asset rating (DAR) is one of the number of techniques that could be used to facilitate low carbon electricity network operation. Previous work has looked at this technique from an asset perspective. This paper focuses, instead, from a network perspective by proposing a dynamic network rating (DNR) approach. The models available for use with DAR are discussed and compared using measured load and weather data from a trial network area within Milton Keynes in the central area of the U.K. This paper then uses the most appropriate model to investigate, through a network case study, the potential gains in dynamic rating compared to static rating for the different network assets - transformers, overhead lines, and cables. This will inform the network operator of the potential DNR gains on an 11-kV network with all assets present and highlight the limiting assets within each season.
Resumo:
The cost and limited flexibility of traditional approaches to 11kV network reinforcement threatens to constrain the uptake of low carbon technologies. Ofgem has released £500m of funding for DNOs to trial innovative techniques and share the learning with the rest of the industry. One of the techniques under study is the addition of Energy Storage at key substations to the network to help with peak load lopping. This paper looks in detail at the sizing algorithm for use in the assessment of alternatives to traditional reinforcement and investigates a method of sizing a battery for use on a Network taking into account load growth, capacity fade and battery lifecycle issues. A further complication to the analysis is the method of operation of the battery system and how this affects the Depth of Discharge (DoD). The proposed method is being trialled on an area of 11kV network in Milton Keynes Central area and the simulation results are presented in this paper.
Resumo:
Dynamic asset rating is one of a number of techniques that could be used to facilitate low carbon electricity network operation. This paper focusses on distribution level transformer dynamic rating under this context. The models available for use with dynamic asset rating are discussed and compared using measured load and weather conditions from a trial Network area within Milton Keynes. The paper then uses the most appropriate model to investigate, through simulation, the potential gains in dynamic rating compared to static rating under two transformer cooling methods to understand the potential gain to the Network Operator.
Resumo:
This paper looks at potential distribution network stability problems under the Smart Grid scenario. This is to consider distributed energy resources (DERs) e.g. renewable power generations and intelligent loads with power-electronic controlled converters. The background of this topic is introduced and potential problems are defined from conventional power system stability and power electronic system stability theories. Challenges are identified with possible solutions from steady-state limits, small-signal, and large-signal stability indexes and criteria. Parallel computation techniques might be included for simulation or simplification approaches are required for a largescale distribution network analysis.
Resumo:
This paper reports work of a MEng student final year project, which looks in detail at the impacts that distributed generation can have on existing low-voltage distribution network protection systems. After a review of up-to-date protection issues, this paper will investigate several key issues that face distributed generation connections when it comes to network protection systems. These issues include, the blinding of protection systems, failure to automatically reclose, unintentional islanding, loss of mains power and the false tripping of feeders. Each of these problems impacts on protection systems in its own way. This study aims to review and investigate these problems via simulation demonstrations on one representative network to recommend solutions to practices.
Resumo:
The realisation of an eventual low-voltage (LV) Smart Grid with a complete communication infrastructure is a gradual process. During this evolution the protection scheme of distribution networks should be continuously adapted and optimised to fit the protection and cost requirements at the time. This paper aims to review practices and research around the design of an effective, adaptive and economical distribution network protection scheme. The background of this topic is introduced and potential problems are defined from conventional protection theories and new Smart Grid technologies. Challenges are identified with possible solutions defined as a pathway to the ultimate flexible and reliable LV protection systems.
Resumo:
Today, the question of how to successfully reduce supply chain costs whilst increasing customer satisfaction continues to be the focus of many firms. It is noted in the literature that supply chain automation can increase flexibility whilst reducing inefficiencies. However, in the dynamic and process driven environment of distribution, there is the absence of a cohesive automation approach to guide companies in improving network competitiveness. This paper aims to address the gap in the literature by developing a three-level framework automation application approach with the assistance of radio frequency identification (RFID) technology and returnable transport equipment (RTE). The first level considers the automation of data retrieval and highlights the benefits of RFID. The second level consists of automating distribution processes such as unloading and assembling orders. As the labour is reduced with the introduction of RFID enabled robots, the balance between automation and labour is discussed. Finally, the third level is an analysis of the decision-making process at network points and the application of cognitive automation to objects. A distribution network scenario is formed and used to illustrate network reconfiguration at each level. The research pinpoints that RFID enabled RTE offers a viable tool to assist supply chain automation. Further research is proposed in particular, the area of cognitive automation to aide with decision-making.
Resumo:
We propose a simple model that captures the salient properties of distribution networks, and study the possible occurrence of blackouts, i.e., sudden failings of large portions of such networks. The model is defined on a random graph of finite connectivity. The nodes of the graph represent hubs of the network, while the edges of the graph represent the links of the distribution network. Both, the nodes and the edges carry dynamical two state variables representing the functioning or dysfunctional state of the node or link in question. We describe a dynamical process in which the breakdown of a link or node is triggered when the level of maintenance it receives falls below a given threshold. This form of dynamics can lead to situations of catastrophic breakdown, if levels of maintenance are themselves dependent on the functioning of the net, once maintenance levels locally fall below a critical threshold due to fluctuations. We formulate conditions under which such systems can be analyzed in terms of thermodynamic equilibrium techniques, and under these conditions derive a phase diagram characterizing the collective behavior of the system, given its model parameters. The phase diagram is confirmed qualitatively and quantitatively by simulations on explicit realizations of the graph, thus confirming the validity of our approach. © 2007 The American Physical Society.
Resumo:
Challenges of returnable transport equipment (RTE) management continue to heighten as the popularity of their usage magnifies. Logistics companies are investigating the implementation of radio-frequency identification (RFID) technology to alleviate problems such as loss prevention and stock reduction. However, the research within this field is limited and fails to fully explore with depth, the wider network improvements that can be made to optimize the supply chain through efficient RTE management. This paper, investigates the nature of RTE network management building on current research and practices, filling a gap in the literature, through the investigation of a product-centric approach where the paradigms of “intelligent products” and “autonomous objects” are explored. A network optimizing approach with RTE management is explored, encouraging advanced research development of the RTE paradigm to align academic research with problematic areas in industry. Further research continues with the development of an agent-based software system, ready for application to a real-case study distribution network, producing quantitative results for further analysis. This is pivotal on the endeavor to developing agile support systems, fully utilizing an information-centric environment and encouraging RTE to be viewed as critical network optimizing tools rather than costly waste.
Resumo:
In order to increase the capacity of the existing Low Voltage grid, one solution is to increase the nominal residential network voltage from 230 V to 300 V, which is easily accommodated within the voltage rating of existing infrastructure such as cabling. A power electronic AC-AC converter would then be used to step the voltage back down to 230 V at an individual property. Such equipment could also be used to provide power quality improvements on both the utility and customer side of the converter depending on its topology. This paper provides an overview of a project which is looking at the development of such a device. The project is being carried out in collaboration with the local UK, Distribution Network Operator (DNO).