5 resultados para Distribution Functions
em Aston University Research Archive
Resumo:
An experimental method for characterizing the time-resolved phase noise of a fast switching tunable laser is discussed. The method experimentally determines a complementary cumulative distribution function of the laser's differential phase as a function of time after a switching event. A time resolved bit error rate of differential quadrature phase shift keying formatted data, calculated using the phase noise measurements, was fitted to an experimental time-resolved bit error rate measurement using a field programmable gate array, finding a good agreement between the time-resolved bit error rates.
Resumo:
A study of the hydrodynamics and mass transfer characteristics of a liquid-liquid extraction process in a 450 mm diameter, 4.30 m high Rotating Disc Contactor (R.D.C.) has been undertaken. The literature relating to this type of extractor and the relevant phenomena, such as droplet break-up and coalescence, drop mass transfer and axial mixing has been revjewed. Experiments were performed using the system C1airsol-350-acetone-water and the effects of drop size, drop size-distribution and dispersed phase hold-up on the performance of the R.D.C. established. The results obtained for the two-phase system C1airso1-water have been compared with published correlations: since most of these correlations are based on data obtained from laboratory scale R.D.C.'s, a wide divergence was found. The hydrodynamics data from this study have therefore been correlated to predict the drop size and the dispersed phase hold-up and agreement has been obtained with the experimental data to within +8% for the drop size and +9% for the dispersed phase hold-up. The correlations obtained were modified to include terms involving column dimensions and the data have been correlated with the results obtained from this study together with published data; agreement was generally within +17% for drop size and within +14% for the dispersed phase hold-up. The experimental drop size distributions obtained were in excellent agreement with the upper limit log-normal distributions which should therefore be used in preference to other distribution functions. In the calculation of the overall experimental mass transfer coefficient the mean driving force was determined from the concentration profile along the column using Simpson's Rule and a novel method was developed to calculate the overall theoretical mass transfer coefficient Kca1, involving the drop size distribution diagram to determine the volume percentage of stagnant, circulating and oscillating drops in the sample population. Individual mass transfer coefficients were determined for the corresponding droplet state using different single drop mass transfer models. Kca1 was then calculated as the fractional sum of these individual coefficients and their proportions in the drop sample population. Very good agreement was found between the experimental and theoretical overall mass transfer coefficients. Drop sizes under mass transfer conditions were strongly dependant upon the direction of mass transfer. Drop Sizes in the absence of mass transfer were generally larger than those with solute transfer from the continuous to the dispersed phase, but smaller than those with solute transfer in the opposite direction at corresponding phase flowrates and rotor speed. Under similar operating conditions hold-up was also affected by mass transfer; it was higher when solute transfered from the continuous to the dispersed phase and lower when direction was reversed compared with non-mass transfer operation.
Resumo:
This thesis describes an investigation by the author into the spares operation of compare BroomWade Ltd. Whilst the complete system, including the warehousing and distribution functions, was investigated, the thesis concentrates on the provisioning aspect of the spares supply problem. Analysis of the historical data showed the presence of significant fluctuations in all the measures of system performance. Two Industrial Dynamics simulation models were developed to study this phenomena. The models showed that any fluctuation in end customer demand would be amplified as it passed through the distributor and warehouse stock control systems. The evidence from the historical data available supported this view of the system's operation. The models were utilised to determine which parts of the total system could be expected to exert a critical influence on its performance. The lead time parameters of the supply sector were found to be critical and further study showed that the manner in which the lead time changed with work in progress levels was also an important factor. The problem therefore resolved into the design of a spares manufacturing system. Which exhibited the appropriate dynamic performance characteristics. The gross level of entity presentation, inherent in the Industrial Dynamics methodology, was found to limit the value of these models in the development of detail design proposals. Accordingly, an interacting job shop simulation package was developed to allow detailed evaluation of organisational factors on the performance characteristics of a manufacturing system. The package was used to develop a design for a pilot spares production unit. The need for a manufacturing system to perform successfully under conditions of fluctuating demand is not limited to the spares field. Thus, although the spares exercise provides an example of the approach, the concepts and techniques developed can be considered to have broad application throughout batch manufacturing industry.
Resumo:
This thesis is about the study of relationships between experimental dynamical systems. The basic approach is to fit radial basis function maps between time delay embeddings of manifolds. We have shown that under certain conditions these maps are generically diffeomorphisms, and can be analysed to determine whether or not the manifolds in question are diffeomorphically related to each other. If not, a study of the distribution of errors may provide information about the lack of equivalence between the two. The method has applications wherever two or more sensors are used to measure a single system, or where a single sensor can respond on more than one time scale: their respective time series can be tested to determine whether or not they are coupled, and to what degree. One application which we have explored is the determination of a minimum embedding dimension for dynamical system reconstruction. In this special case the diffeomorphism in question is closely related to the predictor for the time series itself. Linear transformations of delay embedded manifolds can also be shown to have nonlinear inverses under the right conditions, and we have used radial basis functions to approximate these inverse maps in a variety of contexts. This method is particularly useful when the linear transformation corresponds to the delay embedding of a finite impulse response filtered time series. One application of fitting an inverse to this linear map is the detection of periodic orbits in chaotic attractors, using suitably tuned filters. This method has also been used to separate signals with known bandwidths from deterministic noise, by tuning a filter to stop the signal and then recovering the chaos with the nonlinear inverse. The method may have applications to the cancellation of noise generated by mechanical or electrical systems. In the course of this research a sophisticated piece of software has been developed. The program allows the construction of a hierarchy of delay embeddings from scalar and multi-valued time series. The embedded objects can be analysed graphically, and radial basis function maps can be fitted between them asynchronously, in parallel, on a multi-processor machine. In addition to a graphical user interface, the program can be driven by a batch mode command language, incorporating the concept of parallel and sequential instruction groups and enabling complex sequences of experiments to be performed in parallel in a resource-efficient manner.
Resumo:
Based on a corpus of English, German, and Polish spoken academic discourse, this article analyzes the distribution and function of humor in academic research presentations. The corpus is the result of a European research cooperation project consisting of 300,000 tokens of spoken academic language, focusing on the genres research presentation, student presentation, and oral examination. The article investigates difference between the German and English research cultures as expressed in the genre of specialist research presentations, and the role of humor as a pragmatic device in their respective contexts. The data is analyzed according to the paradigms of corpus-assisted discourse studies (CADS). The findings show that humor is used in research presentations as an expression of discourse reflexivity. They also reveal a considerable difference in the quantitative distribution of humor in research presentations depending on the educational, linguistic, and cultural background of the presenters, thus confirming the notion of different research cultures. Such research cultures nurture distinct attitudes to genres of academic language: whereas in one of the cultures identified researchers conform with the constraints and structures of the genre, those working in another attempt to subvert them, for example by the application of humor. © 2012 Elsevier B.V.