38 resultados para Dissipative forces
em Aston University Research Archive
Resumo:
This paper proposes a semantic analysis of the French free-choice indefinite 'n’importe qui'. The semantics of the indefinite is organised as a ternary structure. The (1) abstract meaning underlies all uses of the item and acts as a principle of creative interpretation generation and comprehension. This principle is actualised via (2) discrete contextual features through to (3) contextual interpretations. Thus, the “existential” reading of 'n’importe qui' is derived by a veridical reading of the arbitrary selection of a qualitatively-marked occurrence from the set of human animates. The derivation of contextual readings from the enrichment by contextual cues of an underspecified meaning has a claim to an explanatory model of the semantics of grammatical polysemous items, and is certainly relevant to model-theoretic approaches in as much as formal semantic notions are intricately linked to the contextual interpretation of items. It is not 'n’importe qui' itself, but its contextual interpretations which may be weak or strong, and an homonymous treatment is not possible given the continuity of the quality and free-choice dimensions from one observed reading of n’importe qui to the next.
Resumo:
Nonlinear instabilities are responsible for spontaneous pattern formation in a vast number of natural and engineered systems, ranging from biology to galaxy buildup. We propose a new instability mechanism leading to pattern formation in spatially extended nonlinear systems, which is based on a periodic antiphase modulation of spectrally dependent losses arranged in a zigzag way: an effective filtering is imposed at symmetrically located wave numbers k and -k in alternating order. The properties of the dissipative parametric instability differ from the features of both key classical concepts of modulation instabilities, i.e., the Benjamin-Feir instability and the Faraday instabiltyity. We demonstrate how the dissipative parametric instability can lead to the formation of stable patterns in one- and two-dimensional systems. The proposed instability mechanism is generic and can naturally occur or can be implemented in various physical systems.
Resumo:
Developing a means of predicting tool life has been and continues to be a focus of much research effort. A common experience in attempting to replicate such efforts is an inability to achieve the levels of agreement between theory and practice of the original researcher or to extrapolate the work to different materials or cutting conditions to those originally used. This thesis sets out to examine why most equations or models when replicated do not give good agreements. One reason which was found is that researchers in wear prediction, their predictions are limited because they generally fail to properly identify the nature of wear mechanisms operative in their study. Also they fail to identify or recognise factors having a significant influence on wear such as bar diameter. Also in this research the similarities and differences between the two processes of single point turning and drilling are examined through a series of tests. A literature survey was undertaken in wear and wear prediction. As a result it was found that there was a paucity in information and research in the work of drilling as compared to the turning operation. This was extended to the lack of standards that exist for the drilling operation. One reason for this scarcity in information on drilling is due to the complexity of the drilling and the tool geometry of the drill. In the comparative drilling and turning tests performed in this work, the same tool material; HSS, and similar work material was used in order to eliminate the differences which may occur due to this factor. Results of the tests were evaluated and compared for the two operations and SEM photographs were taken for the chips produced. Specific test results were obtained for the cutting temperatures and forces of the tool. It was found that cutting temperature is influenced by various factors like tool geometry and cutting speed, and the temperature itself influenced the tool wear and wear mechanisms that act on the tool. It was found and proven that bar diameter influences the temperature, a factor not considered previously.
Resumo:
Optical fiber materials exhibit a nonlinear response to strong electric fields, such as those of optical signals confined within the small fiber core. Fiber nonlinearity is an essential component in the design of the next generation of advanced optical communication systems, but its use is often avoided by engineers because of its intractability. The application of nonlinear technologies in fiber optics offers new opportunities for the design of photonic systems and devices. In this chapter, we make an overview of recent progress in mathematical theory and practical applications of temporal dissipative solitons and self-similar nonlinear structures in optical fiber systems. The design of all-optical high-speed signal processing devices, based on nonlinear dissipative structures, is discussed.
Resumo:
We have studied the kinetics of the phase-separation process of mixtures of colloid and protein in solutions by real-time UV-vis spectroscopy. Complementary small-angle X-ray scattering (SAXS) was employed to determine the structures involved. The colloids used are gold nanoparticles functionalized with protein resistant oligo(ethylene glycol) (OEG) thiol, HS(CH(2))(11)(OCH(2)CH(2))(6)OMe (EG6OMe). After mixing with protein solution above a critical concentration, c*, SAXS measurements show that a scattering maximum appears after a short induction time at q = 0.0322 angstrom(-1) stop, which increases its intensity with time but the peak position does not change with time, protein concentration and salt addition. The peak corresponds to the distance of the nearest neighbor in the aggregates. The upturn of scattering intensities in the low q-range developed with time indicating the formation of aggregates. No Bragg peaks corresponding to the formation of colloidal crystallites could be observed before the clusters dropped out from the solution. The growth kinetics of aggregates is followed in detail by real-time UV-vis spectroscopy, using the flocculation parameter defined as the integral of the absorption in the range of 600-800 nm wavelengths. At low salt addition (<0.5 M), a kinetic crossover from reaction-limited cluster aggregation (RLCA) to diffusion-limited cluster aggregation (DLCA) growth model is observed, and interpreted as being due to the effective repulsive interaction barrier between colloids within the depletion potential. Above 0.5 M NaCl, the surface charge of proteins is screened significantly, and the repulsive potential barrier disappeared, thus the growth kinetics can be described by a DLCA model only.
Resumo:
We extend the theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked fiber lasers. Dissipative structures exist at high map strengths, leading to the generation of stable, short pulses with high energy. Two types of intramap pulse evolution are observed depending on the net cavity dispersion. These are characterized by a reduced model, and semianalytical solutions are obtained.
Resumo:
In this first talk on dissipative structures in fiber applications, we extend theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked fibre lasers. Dissipative structures exist at high map strengths leading to the generation of stable, short pulses with high energy. Two types of intra-map pulse evolutions are observed depending on the net cavity dispersion. These are characterized by a reduced model and semi-analytical solutions are obtained.
Resumo:
In this second talk on dissipative structures in fiber applications, we overview theoretical aspects of the generation, evolution and characterization of self-similar parabolic-shaped pulses in fiber amplifier media. In particular, we present a perturbation analysis that describes the structural changes induced by third-order fiber dispersion on the parabolic pulse solution of the nonlinear Schrödinger equation with gain. Promising applications of parabolic pulses in optical signal post-processing and regeneration in communication systems are also discussed.
Resumo:
In the third and final talk on dissipative structures in fiber applications, we discuss mathematical techniques that can be used to characterize modern laser systems that consist of several discrete elements. In particular, we use a nonlinear mapping technique to evaluate high power laser systems where significant changes in the pulse evolution per cavity round trip is observed. We demonstrate that dissipative soliton solutions might be effectively described using this Poincaré mapping approach.
Resumo:
We extend theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked fibre lasers. Dissipative structures exist at high map strengths, and different pulse evolutions are observed depending on the net cavity dispersion.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT