3 resultados para Dissection

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fifteen Miscanthus genotypes grown in five locations across Europe were analysed to investigate the influence of genetic and environmental factors on cell wall composition. Chemometric techniques combining near infrared reflectance spectroscopy and conventional chemical analyses were used to construct calibration models for determination of acid detergent lignin, acid detergent fibre, and neutral detergent fibre from sample spectra. The developed equations were shown to predict cell wall components with a good degree of accuracy and significant genetic and environmental variation was identified. The influence of nitrogen and potassium fertiliser on the dry matter yield and cell wall composition of M. x giganteus was investigated. A detrimental affect on feedstock quality was observed to result from application of these inputs which resulted in an overall reduction in concentrations of cell wall components and increased accumulation of ash within the biomass. Pyrolysis-gas chromatography-mass spectrometry and thermo-gravimetric analysis indicates that genotypes other than the commercially cultivated M. x giganteus have potential for use in energy conversion processes and in the bio-refining. The yields and quality parameters of the pyrolysis liquids produced from Miscanthus compared favourably with that produced from SRC willow and produced a more stable pyrolysis liquid with a higher lower heating value. Overall, genotype had a more significant effect on cell wall composition than environment. This indicates good potential for dissection of this trait by QTL analysis and also for plant breeding to produce new genotypes with improved feedstock characteristics for energy conversion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The analysis of bacterial genomes for epidemiological purposes often results in the production of a banding profile of DNA fragments characteristic of the genome under investigation. These may be produced using various methods, many of which involve the cutting or amplification of DNA into defined and reproducible characteristic fragments. It is frequently of interest to enquire whether the bacterial isolates are naturally classifiable into distinct groups based on their DNA profiles. A major problem with this approach is whether classification or clustering of the data is even appropriate. It is always possible to classify such data but it does not follow that the strains they represent are ‘actually’ classifiable into well-defined separate parts. Hence, the act of classification does not in itself answer the question: do the strains consist of a number of different distinct groups or species or do they merge imperceptibly into one another because DNA profiles vary continuously? Nevertheless, we may still wish to classify the data for ‘convenience’ even though strains may vary continuously, and such a classification has been called a ‘dissection’. This Statnote discusses the use of classificatory methods in analyzing the DNA profiles from a sample of bacterial isolates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The traditional method of classifying neurodegenerative diseases is based on the original clinico-pathological concept supported by 'consensus' criteria and data from molecular pathological studies. This review discusses first, current problems in classification resulting from the coexistence of different classificatory schemes, the presence of disease heterogeneity and multiple pathologies, the use of 'signature' brain lesions in diagnosis, and the existence of pathological processes common to different diseases. Second, three models of neurodegenerative disease are proposed: (1) that distinct diseases exist ('discrete' model), (2) that relatively distinct diseases exist but exhibit overlapping features ('overlap' model), and (3) that distinct diseases do not exist and neurodegenerative disease is a 'continuum' in which there is continuous variation in clinical/pathological features from one case to another ('continuum' model). Third, to distinguish between models, the distribution of the most important molecular 'signature' lesions across the different diseases is reviewed. Such lesions often have poor 'fidelity', i.e., they are not unique to individual disorders but are distributed across many diseases consistent with the overlap or continuum models. Fourth, the question of whether the current classificatory system should be rejected is considered and three alternatives are proposed, viz., objective classification, classification for convenience (a 'dissection'), or analysis as a continuum.