3 resultados para Disfunção do trato urinário inferior

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background - It is well established that the left inferior frontal gyrus plays a key role in the cerebral cortical network that supports reading and visual word recognition. Less clear is when in time this contribution begins. We used magnetoencephalography (MEG), which has both good spatial and excellent temporal resolution, to address this question. Methodology/Principal Findings - MEG data were recorded during a passive viewing paradigm, chosen to emphasize the stimulus-driven component of the cortical response, in which right-handed participants were presented words, consonant strings, and unfamiliar faces to central vision. Time-frequency analyses showed a left-lateralized inferior frontal gyrus (pars opercularis) response to words between 100–250 ms in the beta frequency band that was significantly stronger than the response to consonant strings or faces. The left inferior frontal gyrus response to words peaked at ~130 ms. This response was significantly later in time than the left middle occipital gyrus, which peaked at ~115 ms, but not significantly different from the peak response in the left mid fusiform gyrus, which peaked at ~140 ms, at a location coincident with the fMRI–defined visual word form area (VWFA). Significant responses were also detected to words in other parts of the reading network, including the anterior middle temporal gyrus, the left posterior middle temporal gyrus, the angular and supramarginal gyri, and the left superior temporal gyrus. Conclusions/Significance - These findings suggest very early interactions between the vision and language domains during visual word recognition, with speech motor areas being activated at the same time as the orthographic word-form is being resolved within the fusiform gyrus. This challenges the conventional view of a temporally serial processing sequence for visual word recognition in which letter forms are initially decoded, interact with their phonological and semantic representations, and only then gain access to a speech code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schurz and Tholen (2016) argue that common approaches to studying the neural basis of “theory of mind” (ToM) obscure a potentially important role for inferior frontal gyrus (IFG) in managing conflict between perspectives, and urge new work to address this question: “to gain a full understanding of the IFG's role in ToM, we encourage future imaging studies to use a wider range of control conditions.” (p332). We wholeheartedly agree, but note that this observation has been made before, and has already led to a programme of work that provides evidence from fMRI, EEG, and TMS on the role of IFG in managing conflict between self and other perspectives in ToM. We highlight these works, and in particular we demonstrate how careful manipulation within ToM tasks has been used to act as an internal control condition, wherein conflict has been manipulated within-subject. We further add to the discussion by framing key questions that remain regarding IFG in the context of these. Using limitations in the existing research, we outline how best researchers can proceed with the challenge set by Schurz and Tholen (2016).