27 resultados para Discrete Wavelet Analysis
em Aston University Research Archive
Resumo:
Human swallowing represents a complex highly coordinated sensorimotor function whose functional neuroanatomy remains incompletely understood. Specifically, previous studies have failed to delineate the temporo-spatial sequence of those cerebral loci active during the differing phases of swallowing. We therefore sought to define the temporal characteristics of cortical activity associated with human swallowing behaviour using a novel application of magnetoencephalography (MEG). In healthy volunteers (n = 8, aged 28-45), 151-channel whole cortex MEG was recorded during the conditions of oral water infusion, volitional wet swallowing (5 ml bolus), tongue thrust or rest. Each condition lasted for 5 s and was repeated 20 times. Synthetic aperture magnetometry (SAM) analysis was performed on each active epoch and compared to rest. Temporal sequencing of brain activations utilised time-frequency wavelet plots of regions selected using virtual electrodes. Following SAM analysis, water infusion preferentially activated the caudolateral sensorimotor cortex, whereas during volitional swallowing and tongue movement, the superior sensorimotor cortex was more strongly active. Time-frequency wavelet analysis indicated that sensory input from the tongue simultaneously activated caudolateral sensorimotor and primary gustatory cortex, which appeared to prime the superior sensory and motor cortical areas, involved in the volitional phase of swallowing. Our data support the existence of a temporal synchrony across the whole cortical swallowing network, with sensory input from the tongue being critical. Thus, the ability to non-invasively image this network, with intra-individual and high temporal resolution, provides new insights into the brain processing of human swallowing. © 2004 Elsevier Inc. All rights reserved.
Resumo:
This thesis considers sparse approximation of still images as the basis of a lossy compression system. The Matching Pursuit (MP) algorithm is presented as a method particularly suited for application in lossy scalable image coding. Its multichannel extension, capable of exploiting inter-channel correlations, is found to be an efficient way to represent colour data in RGB colour space. Known problems with MP, high computational complexity of encoding and dictionary design, are tackled by finding an appropriate partitioning of an image. The idea of performing MP in the spatio-frequency domain after transform such as Discrete Wavelet Transform (DWT) is explored. The main challenge, though, is to encode the image representation obtained after MP into a bit-stream. Novel approaches for encoding the atomic decomposition of a signal and colour amplitudes quantisation are proposed and evaluated. The image codec that has been built is capable of competing with scalable coders such as JPEG 2000 and SPIHT in terms of compression ratio.
Resumo:
The rapid developments in computer technology have resulted in a widespread use of discrete event dynamic systems (DEDSs). This type of system is complex because it exhibits properties such as concurrency, conflict and non-determinism. It is therefore important to model and analyse such systems before implementation to ensure safe, deadlock free and optimal operation. This thesis investigates current modelling techniques and describes Petri net theory in more detail. It reviews top down, bottom up and hybrid Petri net synthesis techniques that are used to model large systems and introduces on object oriented methodology to enable modelling of larger and more complex systems. Designs obtained by this methodology are modular, easy to understand and allow re-use of designs. Control is the next logical step in the design process. This thesis reviews recent developments in control DEDSs and investigates the use of Petri nets in the design of supervisory controllers. The scheduling of exclusive use of resources is investigated and an efficient Petri net based scheduling algorithm is designed and a re-configurable controller is proposed. To enable the analysis and control of large and complex DEDSs, an object oriented C++ software tool kit was developed and used to implement a Petri net analysis tool, Petri net scheduling and control algorithms. Finally, the methodology was applied to two industrial DEDSs: a prototype can sorting machine developed by Eurotherm Controls Ltd., and a semiconductor testing plant belonging to SGS Thomson Microelectronics Ltd.
Resumo:
Data envelopment analysis (DEA) as introduced by Charnes, Cooper, and Rhodes (1978) is a linear programming technique that has widely been used to evaluate the relative efficiency of a set of homogenous decision making units (DMUs). In many real applications, the input-output variables cannot be precisely measured. This is particularly important in assessing efficiency of DMUs using DEA, since the efficiency score of inefficient DMUs are very sensitive to possible data errors. Hence, several approaches have been proposed to deal with imprecise data. Perhaps the most popular fuzzy DEA model is based on a-cut. One drawback of the a-cut approach is that it cannot include all information about uncertainty. This paper aims to introduce an alternative linear programming model that can include some uncertainty information from the intervals within the a-cut approach. We introduce the concept of "local a-level" to develop a multi-objective linear programming to measure the efficiency of DMUs under uncertainty. An example is given to illustrate the use of this method.
Resumo:
This Letter addresses image segmentation via a generative model approach. A Bayesian network (BNT) in the space of dyadic wavelet transform coefficients is introduced to model texture images. The model is similar to a Hidden Markov model (HMM), but with non-stationary transitive conditional probability distributions. It is composed of discrete hidden variables and observable Gaussian outputs for wavelet coefficients. In particular, the Gabor wavelet transform is considered. The introduced model is compared with the simplest joint Gaussian probabilistic model for Gabor wavelet coefficients for several textures from the Brodatz album [1]. The comparison is based on cross-validation and includes probabilistic model ensembles instead of single models. In addition, the robustness of the models to cope with additive Gaussian noise is investigated. We further study the feasibility of the introduced generative model for image segmentation in the novelty detection framework [2]. Two examples are considered: (i) sea surface pollution detection from intensity images and (ii) image segmentation of the still images with varying illumination across the scene.
Resumo:
The use of quantitative methods has become increasingly important in the study of neurodegenerative disease. Disorders such as Alzheimer's disease (AD) are characterized by the formation of discrete, microscopic, pathological lesions which play an important role in pathological diagnosis. This article reviews the advantages and limitations of the different methods of quantifying the abundance of pathological lesions in histological sections, including estimates of density, frequency, coverage, and the use of semiquantitative scores. The major sampling methods by which these quantitative measures can be obtained from histological sections, including plot or quadrat sampling, transect sampling, and point-quarter sampling, are also described. In addition, the data analysis methods commonly used to analyse quantitative data in neuropathology, including analyses of variance (ANOVA) and principal components analysis (PCA), are discussed. These methods are illustrated with reference to particular problems in the pathological diagnosis of AD and dementia with Lewy bodies (DLB).
Resumo:
Purpose - To provide an example of the use of system dynamics within the context of a discrete-event simulation study. Design/methodology/approach - A discrete-event simulation study of a production-planning facility in a gas cylinder-manufacturing plant is presented. The case study evidence incorporates questionnaire responses from sales managers involved in the order-scheduling process. Findings - As the project progressed it became clear that, although the discrete-event simulation would meet the objectives of the study in a technical sense, the organizational problem of "delivery performance" would not be solved by the discrete-event simulation study alone. The case shows how the qualitative outcomes of the discrete-event simulation study led to an analysis using the system dynamics technique. The system dynamics technique was able to model the decision-makers in the sales and production process and provide a deeper understanding of the performance of the system. Research limitations/implications - The case study describes a traditional discrete-event simulation study which incorporated an unplanned investigation using system dynamics. Further, case studies using a planned approach to showing consideration of organizational issues in discrete-event simulation studies are required. Then the role of both qualitative data in a discrete-event simulation study and the use of supplementary tools which incorporate organizational aspects may help generate a methodology for discrete-event simulation that incorporates human aspects and so improve its relevance for decision making. Practical implications - It is argued that system dynamics can provide a useful addition to the toolkit of the discrete-event simulation practitioner in helping them incorporate a human aspect in their analysis. Originality/value - Helps decision makers gain a broader perspective on the tools available to them by showing the use of system dynamics to supplement the use of discrete-event simulation. © Emerald Group Publishing Limited.
Resumo:
This paper examines the impact of innovation on the performance of US business service firms. We distinguish between different levels of innovation (new-to-market and new-to-firm) in our analysis, and allow explicitly for sample selection issues. Reflecting the literature, which highlights the importance of external interaction in service innovation, we pay particular attention to the role of external innovation linkages and their effect on business performance. We find that the presence of service innovation and its extent has a consistently positive effect on growth, but no effect on productivity. There is evidence that the growth effect of innovation can be attributed, at least in part, to the external linkages maintained by innovators in the process of innovation. External linkages have an overwhelmingly positive effect on (innovator) firm performance, regardless of whether innovation is measured as a discrete or continuous variable, and regardless of the level of innovation considered.
Resumo:
A method is described which enables the spatial pattern of discrete objects in histological sections of brain tissue to be determined. The method can be applied to cell bodies, sections of blood vessels or the characteristic lesions which develop in the brain of patients with neurodegenerative disorders. The density of the histological feature under study is measured in a series of contiguous sample fields arranged in a grid or transect. Data from adjacent sample fields are added together to provide density data for larger field sizes. A plot of the variance/mean ratio (V/M) of the data versus field size reveals whether the objects are distributed randomly, uniformly or in clusters. If the objects are clustered, the analysis determines whether the clusters are randomly or regularly distributed and the mean size of the clusters. In addition, if two different histological features are clustered, the analysis can determine whether their clusters are in phase, out of phase or unrelated to each other. To illustrate the method, the spatial patterns of senile plaques and neurofibrillary tangles were studied in histological sections of brain tissue from patients with Alzheimer's disease.
Spatial pattern analysis of beta-amyloid (A beta) deposits in Alzheimer disease by linear regression
Resumo:
The spatial patterns of discrete beta-amyloid (Abeta) deposits in brain tissue from patients with Alzheimer disease (AD) were studied using a statistical method based on linear regression, the results being compared with the more conventional variance/mean (V/M) method. Both methods suggested that Abeta deposits occurred in clusters (400 to <12,800 mu m in diameter) in all but 1 of the 42 tissues examined. In many tissues, a regular periodicity of the Abeta deposit clusters parallel to the tissue boundary was observed. In 23 of 42 (55%) tissues, the two methods revealed essentially the same spatial patterns of Abeta deposits; in 15 of 42 (36%), the regression method indicated the presence of clusters at a scale not revealed by the V/M method; and in 4 of 42 (9%), there was no agreement between the two methods. Perceived advantages of the regression method are that there is a greater probability of detecting clustering at multiple scales, the dimension of larger Abeta clusters can be estimated more accurately, and the spacing between the clusters may be estimated. However, both methods may be useful, with the regression method providing greater resolution and the V/M method providing greater simplicity and ease of interpretation. Estimates of the distance between regularly spaced Abeta clusters were in the range 2,200-11,800 mu m, depending on tissue and cluster size. The regular periodicity of Abeta deposit clusters in many tissues would be consistent with their development in relation to clusters of neurons that give rise to specific neuronal projections.
Resumo:
Discrete, microscopic lesions are developed in the brain in a number of neurodegenerative diseases. These lesions may not be randomly distributed in the tissue but exhibit a spatial pattern, i.e., a departure from randomness towards regularlity or clustering. The spatial pattern of a lesion may reflect its development in relation to other brain lesions or to neuroanatomical structures. Hence, a study of spatial pattern may help to elucidate the pathogenesis of a lesion. A number of statistical methods can be used to study the spatial patterns of brain lesions. They range from simple tests of whether the distribution of a lesion departs from random to more complex methods which can detect clustering and the size, distribution and spacing of clusters. This paper reviews the uses and limitations of these methods as applied to neurodegenerative disorders, and in particular to senile plaque formation in Alzheimer's disease.
Functional neuroimaging and behavioural studies on global form processing in the human visual system
Resumo:
Magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI) and behavioural experiments were used to investigate the neural processes underlying global form perception in human vision. Behavioural studies using Glass patterns examined sensitivity for detecting radial, rotational and horizontal structure. Neuroimaging experiments using either Glass patterns or arrays of Gabor patches determined the spatio-temporal neural responseto global form. MEG data were analysed using synthetic aperture magnetometry (SAM) to spatially map event-related cortical oscillatory power changes: the temporal sequencing of activity within a discrete cortical area was determined using a Morlet wavelet transform. A case study was conducted to determine the effects of strbismic amblyopia on global form processing: all other observers were normally-sighted. The main findings from normally-sighted observers were: 1) sensitivity to horizontal structure was less than for radial or rotational structure; 2) the neural response to global structure was a reduction in cortical oscillatory power (10-30 Hz) within a network of extrastriate areas, including V4 and V3a; 3) the extend of reduced cortical power was least for horizontal patters; 4) V1 was not identified as a region of peak activity with either MEG or fMRI. The main findings with the strabismic amblyope were: 1) sensitivity for detection of radial, rotational, and horizontal structure was reduced when viewed with the amblyopic- relative to the fellow- eye; 2) cortical power changes within V4 to the presentation of rotational Glass patterns were less when viewed with the amblyopic- compared with the fellow- eye. The main conclusions are: 1) a network of extrastriate cortical areas are involved in the analysis of global form, with the most prominent change in neural activity being a reduction in oscillatory power within the 10-30 Hz band; 2) in strabismic amblyopia, the neuronal assembly associated with form perception in extrastriate cortex may be dysfunctional, the nature of this dysfunction may be a change in the normal temporal pattern of neuronal discharges; 3) MEG, fMRI and behavioural measures support the notion that different neural processes underlie the perception of horizontal as opposed to radial or rotational structure.
Resumo:
Progressive addition spectacle lenses (PALs) have now become the method of choice for many presbyopic individuals to alleviate the visual problems of middle-age. Such lenses are difficult to assess and characterise because of their lack of discrete geographical locators of their key features. A review of the literature (mostly patents) describing the different designs of these lenses indicates the range of approaches to solving the visual problem of presbyopia. However, very little is published about the comparative optical performance of these lenses. A method is described here based on interferometry for the assessment of PALs, with a comparison of measurements made on an automatic focimeter. The relative merits of these techniques are discussed. Although the measurements are comparable, it is considered that the interferometry method is more readily automated, and would be ultimately capable of producing a more rapid result.
Resumo:
Wavelet families arise by scaling and translations of a prototype function, called the mother wavelet. The construction of wavelet bases for cardinal spline spaces is generally carried out within the multi-resolution analysis scheme. Thus, the usual way of increasing the dimension of the multi-resolution subspaces is by augmenting the scaling factor. We show here that, when working on a compact interval, the identical effect can be achieved without changing the wavelet scale but reducing the translation parameter. By such a procedure we generate a redundant frame, called a dictionary, spanning the same spaces as a wavelet basis but with wavelets of broader support. We characterize the correlation of the dictionary elements by measuring their 'coherence' and produce examples illustrating the relevance of highly coherent dictionaries to problems of sparse signal representation.