16 resultados para Digit Amputation
em Aston University Research Archive
Resumo:
We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian ``ink generators'' spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the Expectation Maximization (EM) algorithm that maximizes the likelihood of the model generating the data. This approach has many advantages. (1) After identifying the model most likely to have generated the data, the system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style. (2) During the process of explaining the image, generative models can perform recognition driven segmentation. (3) The method involves a relatively small number of parameters and hence training is relatively easy and fast. (4) Unlike many other recognition schemes it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. We have demonstrated our method of fitting models to images does not get trapped in poor local minima. The main disadvantage of the method is it requires much more computation than more standard OCR techniques.
Resumo:
This thesis describes the work carried out on the development of a novel digit actuator system with tactile perception feedback to a user and demonstrated as a master-slave system. For the tactile surface of the digit, contrasting sensor elements of resistive strain gauges and optical fibre Bragg grating sensors were evaluated. A distributive tactile sensing system consisting of optimised neural networking schemes was developed, resulting in taxonomy of artificial touch. The device is suitable for use in minimal invasive surgical (MIS) procedures as a steerable tip and a digit constructed wholly from polymers makes it suitable for use in Magnetic Resonance Imaging (MRI) environments enabling active monitoring of the patient during a procedure. To provide a realistic template of the work the research responded to the needs of two contrasting procedures: palpation of the prostate and endotracheal intubation in anaesthesia where the application of touch sense can significantly assist navigation. The performance of the approach was demonstrated with an experimental digit constructed for use in the laboratory in phantom trials. The phantom unit was developed to resemble facets of the clinical applications and digit system is able to evaluate reactive force distributions acting over the surface of the digit as well as different descriptions of contact and motion relative to the surface of the lumen. Completing control of the digit is via an instrumented glove, such that the digit actuates in sympathy with finger gesture and tactile information feedback is achieved by a combination of the tactile and visual means.
Resumo:
Minimal access procedures in surgery offer benefits of reduced patient recovery time and less pain, yet for the surgeon the task is more complex, as both tactile and visual perception of the working site is reduced. In this paper, experimental evidence of the performance of a novel sensing system embedded in an actuated flexible digit element is presented. The digit represents a steerable tip element of devices such as endoscopes and laparoscopes. This solution is able to discriminate types of contact and tissue interaction, and to feed back this information with the shape of the flexible digit. As an alternative to this information, force level, force distribution, and other quantifiable descriptors can also be evaluated. These can be used to aid perception in processes such as navigation and investigation of tissues through palpation. The solution is pragmatic, and by virtue of its efficient mechanical construction and a polymer construction, it offers opportunities for a disposable element with suitability for magnetic resonance imaging (MRI) and other scanning environments. By using only four photonics sensing elements, full perception of tissue contact and the shape of the actuated digit can be described in the feedback of this information. The distributive sensory method applied to the sensory signals relies on the coupled values of the sensory data transients of the four deployed sensing elements to discriminate tissue interaction directly in near real time.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Minimal access procedures in surgery offer benefits of reduced patient recovery time and less pain, yet for the surgeon the task is more complex, as both tactile and visual perception of the working site is reduced. In this paper, experimental evidence of the performance of a novel sensing system embedded in an actuated flexible digit element is presented. The digit represents a steerable tip element of devices such as endoscopes and laparoscopes. This solution is able to discriminate types of contact and tissue interaction, and to feed back this information with the shape of the flexible digit. As an alternative to this information, force level, force distribution, and other quantifiable descriptors can also be evaluated. These can be used to aid perception in processes such as navigation and investigation of tissues through palpation. The solution is pragmatic, and by virtue of its efficient mechanical construction and a polymer construction, it offers opportunities for a disposable element with suitability for magnetic resonance imaging (MRI) and other scanning environments. By using only four photonics sensing elements, full perception of tissue contact and the shape of the actuated digit can be described in the feedback of this information. The distributive sensory method applied to the sensory signals relies on the coupled values of the sensory data transients of the four deployed sensing elements to discriminate tissue interaction directly in near real time.
Resumo:
Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a combination of local linear PCA projections. However, conventional PCA does not correspond to a probability density, and so there is no unique way to combine PCA models. Previous attempts to formulate mixture models for PCA have therefore to some extent been ad hoc. In this paper, PCA is formulated within a maximum-likelihood framework, based on a specific form of Gaussian latent variable model. This leads to a well-defined mixture model for probabilistic principal component analysers, whose parameters can be determined using an EM algorithm. We discuss the advantages of this model in the context of clustering, density modelling and local dimensionality reduction, and we demonstrate its application to image compression and handwritten digit recognition.
Resumo:
We address the collective dynamics of a soliton train propagating in a medium described by the nonlinear Schrödinger equation. Our approach uses the reduction of train dynamics to the discrete complex Toda chain (CTC) model for the evolution of parameters for each train constituent: such a simplification allows one to carry out an approximate analysis of the dynamics of positions and phases of individual interacting pulses. Here, we employ the CTC model to the problem which has relevance to the field of fibre optics communications where each binary digit of transmitted information is encoded via the phase difference between the two adjacent solitons. Our goal is to elucidate different scenarios of the train distortions and the subsequent information garbling caused solely by the intersoliton interactions. First, we examine how the structure of a given phase pattern affects the initial stage of the train dynamics and explain the general mechanisms for the appearance of unstable collective soliton modes. Then we further discuss the nonlinear regime concentrating on the dependence of the Lax scattering matrix on the input phase distribution; this allows one to classify typical features of the train evolution and determine the distance where the soliton escapes from its slot. In both cases, we demonstrate deep mathematical analogies with the classical theory of crystal lattice dynamics.
Resumo:
The research consists of three empirical studies. The first examines how source country characteristics affect the aggregate FDI inflows in the Japanese economy during the period of 1989-2002. Our results demonstrate that the stable investment climate of the home country is an essential factor indicating FDI inflows to Japan. By contrast, the export performance of the source country is negatively correlated with FDI inflows, indicating that international trade and FDI are substitutes. The second study identifies the determinants of foreign penetration across Japanese manufacturing sectors at the three-digit level during the period of 1997-2003. More importantly, this study examines the moderating effects of keiretsu affiliations on the relationship between various sectoral characteristics and foreign participation. The evidence of both horizontal and vertical keiretsu impacts on foreign penetration depends on not only different proxy measures used for inward FDI, but also on the level of technological sophistication in given sectors. In general, our results demonstrate that horizontally linked keiretsu are positively associated with foreign productions in knowledge-intensive sectors. By contrast, this effect becomes a significant entry barrier to foreign employment in low-tech sectors. The final study evaluates the impacts of a foreign presence on the productivity of Japanese manufacturing firms over the period of 1997-2003. Our results suggest that spillover effects largely differ according to the level of absorptive capacity of indigenous firms.
Resumo:
This thesis investigates changes in the oscillatory dynamics in key areas of the pain matrix during different modalities of pain. Gamma oscillations were seen in the primary somatosensory cortex in response to somatic electrical stimulation at painful and non-painful intensities. The strength of the gamma oscillations was found to relate to the intensity of the stimulus. Gamma oscillations were not seen during distal oesophageal electrical stimulation or the cold pressor test. Gamma oscillations were not seen in all participants during somatic electrical stimulation, however clear evoked responses from SI were seen in everyone. During a train of electrical pulses to the median nerve and the digit, a decrease in the frequency of the gamma oscillations was seen across the duration of the train. During a train of electrical stimuli to the median nerve and the digit, gamma oscillations were seen at ~20-100ms following stimulus onset and at frequencies between 30-100Hz. This gamma response was found to have a strong evoked component. Following a single electrical pulse to the digit, gamma oscillations were seen at 100-250ms and between 60-95Hz and were not temporally coincident with the main components of the evoked response. These results suggest that gamma oscillations may have an important role in encoding different aspects of sensory stimuli within their characteristics such as strength and frequency. These findings help to elucidate how somatic stimuli are processed within the cortex which in turn may be used to understand abnormal cases of somatosensory processing.
Resumo:
This longitudinal study examined the contribution of phonological awareness, phonological memory, and visuospatial ability to reading development in 142 English-speaking children from the start of kindergarten to the middle of Grade 2. Partial cross-lagged analyses revealed significant relationships between early performance on block design and matching letter-like forms tasks and later reading ability. Rhyme awareness correlated with later reading ability during the earliest stages, but onset awareness did not emerge as important until after the children had started reading. Digit span correlated significantly with future reading ability at every stage. These findings indicate that although phonological awareness, phonological memory, and visuospatial ability are all necessary for emergent reading, their relative importance varies across the first 2 years of reading development.
Resumo:
In this paper, we address this policy issue using a stylised methodology that relies on estimates of the cash flow sensitivity of firms’ investment, as well as a relatively new methodology that enables us to generate a (0, 1) bounded measure of investment efficiency of firms, i.e., the efficiency with which firms can convert their sales into investment, after controlling for unobserved year- and industry-specific effects. Higher investment efficiency is associated with lower financing constraint. Our results indicate that there is considerable heterogeneity in investment efficiency across firms, during a given year; the range being 0.57-0.82. However, the average investment efficiency measure is similar across years, regions and NACE 2-digit industries. We also do not find discernible patterns in the relationship between investment efficiency and firm size, both before and during the financial crisis. The results suggest that while some firms are clearly less efficient at translating their performance into investment, broad policies targeting firms of a certain size, or those within a particular industry or region, may not successfully address the problem of financing constraint in the United Kingdom. The targeting of firms with financing constraints may have to be considerably more refined, and look at not easily observable factors such as credit history/events and organisational capacity of the firms.
Resumo:
Traditional research in the context of product market entry has explored the strategic reactions of incumbent firms when threatened by the possibility of entry, and have identified industry-specific factors that affect entry rates. However, following de Soto (1989), there has been increasing emphasis on regulatory and institutional factors governing entry rates, especially in the context of developing countries. Using three-digit industry-level data from India, for the 1984–97 period, we examine the phenomenon of entry in the Indian context. Our empirical results suggest that during the 1980s industry-level factors largely explained variations in entry rates, but that, following the economic federalism brought about by the post-1991 reforms, variations in entry rates during the 1990s were explained largely by state-level institutional and legacy factors. Past productivity growth affects net entry rates as well.
Resumo:
We address the collective dynamics of a soliton train propagating in a medium described by the nonlinear Schrödinger equation. Our approach uses the reduction of train dynamics to the discrete complex Toda chain (CTC) model for the evolution of parameters for each train constituent: such a simplification allows one to carry out an approximate analysis of the dynamics of positions and phases of individual interacting pulses. Here, we employ the CTC model to the problem which has relevance to the field of fibre optics communications where each binary digit of transmitted information is encoded via the phase difference between the two adjacent solitons. Our goal is to elucidate different scenarios of the train distortions and the subsequent information garbling caused solely by the intersoliton interactions. First, we examine how the structure of a given phase pattern affects the initial stage of the train dynamics and explain the general mechanisms for the appearance of unstable collective soliton modes. Then we further discuss the nonlinear regime concentrating on the dependence of the Lax scattering matrix on the input phase distribution; this allows one to classify typical features of the train evolution and determine the distance where the soliton escapes from its slot. In both cases, we demonstrate deep mathematical analogies with the classical theory of crystal lattice dynamics.
Resumo:
Trauma and damage to the delicate structures of the inner ear frequently occurs during insertion of electrode array into the cochlea. This is strongly related to the excessive manual insertion force of the surgeon without any tool/tissue interaction feedback. The research is examined tool-tissue interaction of large prototype scale (12.5:1) digit embedded with distributive tactile sensor based upon cochlear electrode and large prototype scale (4.5:1) cochlea phantom for simulating the human cochlear which could lead to small scale digit requirements. This flexible digit classified the tactile information from the digit-phantom interaction such as contact status, tip penetration, obstacles, relative shape and location, contact orientation and multiple contacts. The digit, distributive tactile sensors embedded with silicon-substrate is inserted into the cochlea phantom to measure any digit/phantom interaction and position of the digit in order to minimize tissue and trauma damage during the electrode cochlear insertion. The digit is pre-curved in cochlea shape so that the digit better conforms to the shape of the scala tympani to lightly hug the modiolar wall of a scala. The digit have provided information on the characteristics of touch, digit-phantom interaction during the digit insertion. The tests demonstrated that even devices of such a relative simple design with low cost have potential to improve cochlear implants surgery and other lumen mapping applications by providing tactile feedback information by controlling the insertion through sensing and control of the tip of the implant during the insertion. In that approach, the surgeon could minimize the tissue damage and potential damage to the delicate structures within the cochlear caused by current manual electrode insertion of the cochlear implantation. This approach also can be applied diagnosis and path navigation procedures. The digit is a large scale stage and could be miniaturized in future to include more realistic surgical procedures.
Resumo:
Purpose – The purpose of this paper is to explore the importance of host country networks and organisation of production in the context of international technology transfer that accompanies foreign direct investment (FDI). Design/methodology/approach – The empirical analysis is based on unbalanced panel data covering Japanese firms active in two-digit manufacturing sectors over a seven-year period. Given the self-selection problem affecting past sectoral-level studies, using firm-level panel data is a prerequisite to provide robust empirical evidence. Findings – While Japan is thought of as being a technologically advanced country, the results show that vertical productivity spillovers from FDI occur in Japan, but they are sensitive to technological differences between domestic firms and the idiosyncratic Japanese institutional network. FDI in vertically organised keiretsu sectors generates inter-industry spillovers through backward and forward linkages, while FDI within sectors linked to vertical keiretsu activities adversely affects domestic productivity. Overall, our results suggest that the role of vertical keiretsu is more prevalent than that of horizontal keiretsu. Originality/value – Japan’s industrial landscape has been dominated by institutional clusters or networks of inter-firm organisations through reciprocated, direct and indirect ties. However, interactions between inward investors and such institutionalised networks in the host economy are seldom explored. The role and characteristics of local business groups, in the form of keiretsu networks, have been investigated to determine the scale and scope of spillovers from inward FDI to Japanese establishments. This conceptualisation depends on the institutional mechanism and the market structure through which host economies absorb and exploit FDI.