11 resultados para Diffuse reflectance spectroscopy

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines the effect of blood absorption on the endogenous fluorescence signal intensity of biological tissues. Experimental studies were conducted to identify these effects. To register the fluorescence intensity, the fluorescence spectroscopy method was employed. The intensity of the blood flow was measured by laser Doppler flowmetry. We proposed one possible implementation of the Monte Carlo method for the theoretical analysis of the effect of blood on the fluorescence signals. The simulation is constructed as a four-layer skin optical model based on the known optical parameters of the skin with different levels of blood supply. With the help of the simulation, we demonstrate how the level of blood supply can affect the appearance of the fluorescence spectra. In addition, to describe the properties of biological tissue, which may affect the fluorescence spectra, we turned to the method of diffuse reflectance spectroscopy (DRS). Using the spectral data provided by the DRS, the tissue attenuation effect can be extracted and used to correct the fluorescence spectra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocystalline TiO2 particles were successfully synthesized on porous hosts (SBA-15 and ZSM-15) via a sol-gel impregnation method. Resulting nanocomposites were characterized by XRD, TEM, BET surface analysis, Raman and UV-vis diffuse reflectance spectroscopy, and their photocatalytic activity for H2 production evaluated. XRD evidences the formation of anatase nanoparticles over both ZSM-5 and SBA-15 porous supports, with TEM highlighting a strong particle size dependence on titania precursor concentration. Photocatalytic activities of TiO2/ZSM-5 and TiO2/SBA-15 composites were significantly enhanced compared to pure TiO2, owing to the smaller TiO2 particle size and higher surface area of the former. TiO2 loadings over the porous supports and concomitant photocatalytic hydrogen production were optimized with respect to light absorption, available surface reaction sites and particle size. 10%TiO2/ZSM-5 and 20%TiO2/SBA-15 proved the most active photocatalysts, exhibiting extraordinary hydrogen evolution rates of 10,000 and 8800μmolgTiO2 -1 h-1 under full arc, associated with high external quantum efficiencies of 12.6% and 5.4% respectively under 365nm irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein, we demonstrate a template-free and eco-friendly strategy to synthesize hierarchical Ag3PO4 microcrystals with sharp corners and edges via silver–ammine complex at room temperature. The as-synthesized hierarchical Ag3PO4 microcrystals were characterized by X-ray diffraction, field-emission scanning electron microscope (FESEM), UV–vis diffuse reflectance spectroscopy (UV–vis DRS), BET surface area analyzer, and photoluminescence analysis (PL). Our results clearly indicated that the as-synthesized Ag3PO4 microcrystals possess a hierarchical structure with sharp corners and edges. More attractively, the adsorption ability and visible light photocatalytic activity of the as-synthesized hierarchical Ag3PO4 is much higher than that of conventional Ag3PO4.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A study of clay chemistry has been approached with three aims: - to modify the conducting properties by intercalation of tetrathiafulvalene, - to study the electrochemistry of redox-active coordination compounds immobilised on clay coated electrodes, and - to study the role of clays as reagents in inorganic glass forming reactions using mainly solid-state magic-angle-spinning NMR. TTF was intercalated by smectites containing different interlayer and lattice cations. Evidence from ESR and 57Fe Mossbauer indicated charge-transfer from TTF to structural iron in natural montmorillonite, and to interlayer Cu2+ in Cu2+ exchanged laponite. No charge transfer was observed for laponite (Na+ form) itself. Ion exchange of TTF3(BF4)2 with laponite was found to proceed quantitatively. The intercalated species were believed to be (TTF)2+ dimers. Conductivity data showed an order of magnitude increase for the intercalated clays. The mechanism is thought to be ionic rather than CT as Na+ laponite showed a similar enhancement in conductivity. Mechanically robust colloidal clay films were prepared on platinum electrodes. After immersion in solutions containing redox active complexes [Co(bpy)3]3+ and [Cr(bpy)3]3+, the films became electroactive when a potential was applied. Cyclic voltammograms obtained for both complexes were found to be of the diffusion controlled type. For [Co(bpy)3]3+ immobilised on clay coated electrodes, a one-step oxidation and four-step reduction wave was observed corresponding to a one electron stepwise reversible reduction of Co(III), through Co(II), Co(I), Co(O) to Co(I) oxidation state. For [Cr(bpy)3]3+ the electrochemistry was complicated by the presence of additional waves corresponding to the dissociation of [Cr(bpy)3]3+ into the diaquo complex. ESR and diffuse reflectance data supported such a mechanism. 29Si, 27Al and 23Na MAS NMR spectroscopy, supported by powder XRD and FTIR, was used to probe the role of clays as reagents in glass forming reactions. 29Si MAS NMR was found to be a very sensitive technique for identifying the presence and relative abundance of crystalline and non-crystalline phases. In thermal reactions of laponite formation of new mineral phases such as forsterite, akermanite, sillimanite and diopside were detected. The relative abundance of each phase was dependent on thermal history, chemical nature and concentration of the modifier oxide present. In continuing work, the effect of selected oxides on the glass forming reactions of a model feldspar composition was investigated using solid state NMR alone. Addition of network modifying oxides generally produced less negative 29Si chemical shifts and larger linewidths corresponding to a wider distribution of Si-O-Si bond angles and lengths, and a dominant aluminosilicate phase with a less polymerised structure than the starting material. 29Si linewidths and 27Al chemical shifts were respectively correlated with cationic potential and Lewis acidity of the oxide cations. Anomalous Al(4) chemical shifts were thought to be due to precipitation of aluminate phases rather than a breakdown in Lowenstein's aluminium avoidance principle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Manvers coal has been pyrolysed to 500ºC in a stirred autoclave under various pressures of nitrogen (pyrolysis) and hydrogen (hydropyrolysis). All products were investigated. Pyrolysis of coals involves the transfer of hydrogen atoms from one part of their structure to another. In the above experiments there was no way of labelling the hydrogen or of distinguishing between hydrogen which was initially part of the coal and hydrogen originating in the external atmosphere. Consequently, Manvers coal has been pyrolysed in an atmosphere of deuterium in order to obtain greater insight into the mechanism of hydropyrolysis. In particular it was hoped to distinguish between direct hydrogenation (deuteration!) of the coal and the products of pyrolysis and the 'shuttling' of hydrogen atoms between different parts of the pyrolysing coal. The addition to the coal of 5% (wt.% of coal) of either tetralin or pyrite was also studied. A variety of techniques were used to analyse the products of pyrolysis: gas chromatography - mass spectrometry and high performance liquid chromatography for tars; thermal conductivity gas chromatography and high resolution mass spectrometry for gases; methanol densities, microporosities and diffuse reflectance infra red spectroscopy for the cokes (chars); refractive index to determine deuterium in the liquor. An attempt has been made to apply basic thermodynamics to reactions which are likely to occur in the hydropyrolysis of coals. Diffusion and effusion rates for hydrogen and tar molecules have also been estimated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fifteen Miscanthus genotypes grown in five locations across Europe were analysed to investigate the influence of genetic and environmental factors on cell wall composition. Chemometric techniques combining near infrared reflectance spectroscopy and conventional chemical analyses were used to construct calibration models for determination of acid detergent lignin, acid detergent fibre, and neutral detergent fibre from sample spectra. The developed equations were shown to predict cell wall components with a good degree of accuracy and significant genetic and environmental variation was identified. The influence of nitrogen and potassium fertiliser on the dry matter yield and cell wall composition of M. x giganteus was investigated. A detrimental affect on feedstock quality was observed to result from application of these inputs which resulted in an overall reduction in concentrations of cell wall components and increased accumulation of ash within the biomass. Pyrolysis-gas chromatography-mass spectrometry and thermo-gravimetric analysis indicates that genotypes other than the commercially cultivated M. x giganteus have potential for use in energy conversion processes and in the bio-refining. The yields and quality parameters of the pyrolysis liquids produced from Miscanthus compared favourably with that produced from SRC willow and produced a more stable pyrolysis liquid with a higher lower heating value. Overall, genotype had a more significant effect on cell wall composition than environment. This indicates good potential for dissection of this trait by QTL analysis and also for plant breeding to produce new genotypes with improved feedstock characteristics for energy conversion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyethylene (a 1:1 blend of m-LLDPE and z-LLDPE) double layer silicate clay nanocomposites were prepared by melt extrusion using a twin screw extruder. Maleic anhydride grafted polyethylene (PEgMA) was used as a compatibiliser to enhance the dispersion of two organically modified monmorilonite clays (OMMT): Closite 15A (CL15) and nanofill SE 3000 (NF), and natural montmorillonite (NaMMT). The clay dispersion and morphology obtained in the extruded nanocomposite samples were fully characterised both after processing and during photo-oxidation by a number of complementary analytical techniques. The effects of the compatibiliser, the organoclay modifier (quartenary alkyl ammonium surfactant) and the clays on the behaviour of the nanocomposites during processing and under accelerated weathering conditions were investigated. X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), rheometry and attenuated reflectance spectroscopy (ATR-FTIR) showed that the nanocomposite structure obtained is dependent on the type of clay used, the presence or absence of a compatibiliser and the environment the samples are exposed to. The results revealed that during processing PE/clay nanocomposites are formed in the presence of the compatibiliser PEgMA giving a hybrid exfoliated and intercalated structures, while microcomposites were obtained in the absence of PEgMA; the unmodified NaMMT-containing samples showed encapsulated clay structures with limited extent of dispersion in the polymer matrix. The effect of processing on the thermal stability of the OMMT-containing polymer samples was determined by measuring the additional amount of vinyl-type unsaturation formed due to a Hoffman elimination reaction that takes place in the alkyl ammonium surfactant of the modified clay at elevated temperatures. The results indicate that OMMT is responsible for the higher levels of unsaturation found in OMMT-PE samples when compared to both the polymer control and the NaMMT-PE samples and confirms the instability of the alkyl ammonium surfactant during melt processing and its deleterious effects on the durability aspects of nanocomposite products. The photostability of the PE/clay nanocomposites under accelerated weathering conditions was monitored by following changes in their infrared signatures and mechanical properties. The rate of photo-oxidation of the compatibilised PE/PEgMA/OMMT nanocomposites was much higher than that of the PE/OMMT (in absence of PEgMA) counterparts, the polymer controls and the PE–NaMMT sample. Several factors have been observed that can explain the difference in the photo-oxidative stability of the PE/clay nanocomposites including the adverse role played by the thermal decomposition products of the alkyl ammonium surfactant, the photo-instability of PEgMA, unfavourable interactions between PEgMA and products formed in the polymer as a consequence of the degradation of the surfactant on the clay, as well as a contribution from a much higher extent of exfoliated structures, determined by TEM, formed with increasing UV-exposure times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fifteen Miscanthus genotypes grown in five locations across Europe were analysed to investigate the influence of genetic and environmental factors on cell wall composition. Chemometric techniques combining near infrared reflectance spectroscopy (NIRS) and conventional chemical analyses were used to construct calibration models for determination of acid detergent lignin (ADL), acid detergent fibre (ADF), and neutral detergent fibre (NDF) from sample spectra. Results generated were subsequently converted to lignin, cellulose and hemicellulose content and used to assess the genetic and environmental variation in cell wall composition of Miscanthus and to identify genotypes which display quality traits suitable for exploitation in a range of energy conversion systems. The NIRS calibration models developed were found to predict concentrations with a good degree of accuracy based on the coefficient of determination (R2), standard error of calibration (SEC), and standard error of cross-validation (SECV) values. Across all sites mean lignin, cellulose and hemicellulose values in the winter harvest ranged from 76–115 g kg-1, 412–529 g kg-1, and 235–338 g kg-1 respectively. Overall, of the 15 genotypes Miscanthus x giganteus and Miscanthus sacchariflorus contained higher lignin and cellulose concentrations in the winter harvest. The degree of observed genotypic variation in cell wall composition indicates good potential for plant breeding and matching feedstocks to be optimised to different energy conversion processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the problem of obtaining 3d detailed reconstructions of human faces in real-time and with inexpensive hardware. We present an algorithm based on a monocular multi-spectral photometric-stereo setup. This system is known to capture high-detailed deforming 3d surfaces at high frame rates and without having to use any expensive hardware or synchronized light stage. However, the main challenge of such a setup is the calibration stage, which depends on the lights setup and how they interact with the specific material being captured, in this case, human faces. For this purpose we develop a self-calibration technique where the person being captured is asked to perform a rigid motion in front of the camera, maintaining a neutral expression. Rigidity constrains are then used to compute the head's motion with a structure-from-motion algorithm. Once the motion is obtained, a multi-view stereo algorithm reconstructs a coarse 3d model of the face. This coarse model is then used to estimate the lighting parameters with a stratified approach: In the first step we use a RANSAC search to identify purely diffuse points on the face and to simultaneously estimate this diffuse reflectance model. In the second step we apply non-linear optimization to fit a non-Lambertian reflectance model to the outliers of the previous step. The calibration procedure is validated with synthetic and real data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Developing novel heterojunction photocatalysts is a powerful strategy for improving the separation efficiency of photogenerated charge carriers, which is attracting the intense research interest in photocatalysis. Herein we report a highly efficient hetero/nanojunction consisting of Ag2CO3 nanoparticles grown on layered g-C3N4 nanosheets synthesized via a facile and template free in situ precipitation method. The UV–vis diffuse reflectance studies revealed that the synthesized Ag2CO3/g-C3N4 hetero/nanojunctions exhibit a broader and stronger light absorption in the visible light region, which is highly beneficial for absorbing the visible light in the solar spectrum. The optimum photocatalytic activity of Ag2CO3/g-C3N4 at a weight content of 10% Ag2CO3 for the degradation of Rhodamine B was almost 5.5 and 4 times as high as that of the pure Ag2CO3 and g-C3N4, respectively. The enhanced photocatalytic activity of the Ag2CO3/g-C3N4 hetero/nanojunctions is due to synergistic effects including the strong visible light absorption, large specific surface area, and high charge transfer and separation efficiency. More importantly, the high photostability and low use of the noble metal silver which reduces the cost of the material. Therefore, the synthesized Ag2CO3/g-C3N4 hetero/nanojunction photocatalyst is a promising candidate for energy storage and environment protection applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Herein, we demonstrate the synthesis of highly efficient Fe-doped graphitic carbon nitride (g-C3N4) nanosheets via a facile and cost effective method. The synthesized Fe-doped g-C3N4 nanosheets were well characterized by various analytical techniques. The results revealed that the Fe exists mainly in the +3 oxidation state in the Fe-doped g-C3N4 nanosheets. Fe doping of g-C3N4 nanosheets has a great influence on the electronic and optical properties. The diffuse reflectance spectra of Fe-doped g-C3N4 nanosheets exhibit red shift and increased absorption in the visible light range, which is highly beneficial for absorbing the visible light in the solar spectrum. More significantly, the Fe-doped g-C3N4 nanosheets exhibit greatly enhanced photocatalytic activity for the degradation of Rhodamine B under sunlight irradiation. The photocatalytic activity of 2 mol% Fe-doped g-C3N4 nanosheets is almost 7 times higher than that of bulk g-C3N4 and 4.5 times higher than that of pure g-C3N4 nanosheets. A proposed mechanism for the enhanced photocatalytic activity of Fe-doped g-C3N4 nanosheets was investigated by trapping experiments. The synthesized photocatalysts are highly stable even after five successive experimental runs. The enhanced photocatalytic performance of Fe-doped g-C3N4 nanosheets is due to high visible light response, large surface area, high charge separation and charge transfer. Therefore, the Fe-doped g-C3N4 photocatalyst is a promising candidate for energy conversion and environmental remediation.