4 resultados para Diet-induced Thermogenesis
em Aston University Research Archive
Resumo:
Purpose: Prenatal undernutrition followed by postweaning feeding of a high-fat diet results in obesity in the adult offspring. In this study, we investigated whether diet-induced thermogenesis is altered as a result of such nutritional mismatch. Methods: Female MF-1 mice were fed a normal protein (NP, 18 % casein) or a protein-restricted (PR, 9 % casein) diet throughout pregnancy and lactation. After weaning, male offspring of both groups were fed either a high-fat diet (HF; 45 % kcal fat) or standard chow (C, 7 % kcal fat) to generate the NP/C, NP/HF, PR/C and PR/HF adult offspring groups (n = 7-11 per group). Results: PR/C and NP/C offspring have similar body weights at 30 weeks of age. Postweaning HF feeding resulted in significantly heavier NP/HF offspring (P <0.01), but not in PR/HF offspring, compared with their chow-fed counterparts. However, the PR/HF offspring exhibited greater adiposity (P <0.01) v the NP/HF group. The NP/HF offspring had increased energy expenditure and increased mRNA expression of uncoupling protein-1 and β-3 adrenergic receptor in the interscapular brown adipose tissue (iBAT) compared with the NP/C mice (both at P <0.01). No such differences in energy expenditure and iBAT gene expression were observed between the PR/HF and PR/C offspring. Conclusions: These data suggest that a mismatch between maternal diet during pregnancy and lactation, and the postweaning diet of the offspring, can attenuate diet-induced thermogenesis in the iBAT, resulting in the development of obesity in adulthood. © 2014 Springer-Verlag Berlin Heidelberg.
Resumo:
The impact of nutritional variation, within populations not overtly malnourished, on cognitive function and arousal is considered. The emphasis is on susceptibility to acute effects of meals and glucose loads, and chronic effects of dieting, on mental performance, and effects of cholesterol and vitamin levels on cognitive impairment. New developments in understanding dietary influences on neurohormonal systems, and their implications for cognition and affect, allow reinterpretation of both earlier and recent findings. Evidence for a detrimental effect of omitting a meal on cognitive performance remains equivocal: from the outset, idiosyncrasy has prevailed. Yet, for young and nutritionally vulnerable children, breakfast is more likely to benefit than hinder performance. For nutrient composition, despite inconsistencies, some cautious predictions can be made. Acutely, carbohydrate-rich–protein-poor meals can be sedating and anxiolytic; by comparison, protein-rich meals may be arousing, improving reaction time but also increasing unfocused vigilance. Fat-rich meals can lead to a decline in alertness, especially where they differ from habitual fat intake. These acute effects may vary with time of day and nutritional status. Chronically, protein-rich diets have been associated with decreased positive and increased negative affect relative to carbohydrate-rich diets. Probable mechanisms include diet-induced changes in monoamine, especially serotoninergic neurotransmitter activity, and functioning of the hypothalamic pituitary adrenal axis. Effects are interpreted in the context of individual traits and susceptibility to challenging, even stressful, tests of performance. Preoccupation with dieting may impair cognition by interfering with working memory capacity, independently of nutritional status. The change in cognitive performance after administration of glucose, and other foods, may depend on the level of sympathetic activation, glucocorticoid secretion, and pancreatic β-cell function, rather than simple fuelling of neural activity. Thus, outcomes can be predicted by vulnerability in coping with stressful challenges, interacting with nutritional history and neuroendocrine status. Functioning of such systems may be susceptible to dietary influences on neural membrane fluidity, and vitamin-dependent cerebrovascular health, with cognitive vulnerability increasing with age.
Resumo:
Previously, we have shown that a maternal low protein diet, fed exclusively during the preimplantation period of mouse development (Emb-LPD), is sufficient to induce by the blastocyst stage a compensatory growth phenotype in late gestation and postnatally, correlating with increased risk of adult onset cardiovascular disease and behavioural dysfunction. Here, we examine mechanisms of induction of maternal Emb-LPD programming and early compensatory responses by the embryo. Emb-LPD induced changes in maternal serum metabolites at the time of blastocyst formation (E3.5), notably reduced insulin and increased glucose, together with reduced levels of free amino acids (AAs) including branched chain AAs leucine, isoleucine and valine. Emb-LPD also caused reduction in the branched chain AAs within uterine fluid at the blastocyst stage. These maternal changes coincided with an altered content of blastocyst AAs and reduced mTORC1 signalling within blastocysts evident in reduced phosphorylation of effector S6 ribosomal protein and its ratio to total S6 protein but no change in effector 4E-BP1 phosphorylated and total pools. These changes were accompanied by increased proliferation of blastocyst trophectoderm and total cells and subsequent increased spreading of trophoblast cells in blastocyst outgrowths. We propose that induction of metabolic programming following Emb-LPD is achieved through mTORC1signalling which acts as a sensor for preimplantation embryos to detect maternal nutrient levels via branched chain AAs and/or insulin availability. Moreover, this induction step associates with changes in extra-embryonic trophectoderm behaviour occurring as early compensatory responses leading to later nutrient recovery. © 2012 Fleming et al.
Resumo:
Poor maternal nutrition during pregnancy can alter postnatal phenotype and increase susceptibility to adult cardiovascular and metabolic diseases. However, underlying mechanisms are largely unknown. Here, we show that maternal low protein diet (LPD), fed exclusively during mouse preimplantation development, leads to offspring with increased weight from birth, sustained hypertension, and abnormal anxiety-related behavior, especially in females. These adverse outcomes were interrelated with increased perinatal weight being predictive of later adult overweight and hypertension. Embryo transfer experiments revealed that the increase in perinatal weight was induced within blastocysts responding to preimplantation LPD, independent of subsequent maternal environment during later pregnancy. We further identified the embryo-derived visceral yolk sac endoderm (VYSE) as one mediator of this response. VYSE contributes to fetal growth through endocytosis of maternal proteins, mainly via the multiligand megalin (LRP2) receptor and supply of liberated amino acids. Thus, LPD maintained throughout gestation stimulated VYSE nutrient transport capacity and megalin expression in late pregnancy, with enhanced megalin expression evident even when LPD was limited to the preimplantation period. Our results demonstrate that in a nutrient-restricted environment, the preimplantation embryo activates physiological mechanisms of developmental plasticity to stablize conceptus growth and enhance postnatal fitness. However, activation of such responses may also lead to adult excess growth and cardiovascular and behavioral diseases. © 2008 by the Society for the Study of Reproduction, Inc.