3 resultados para Diet of Worms (1521)
em Aston University Research Archive
Resumo:
Purpose: Prenatal undernutrition followed by postweaning feeding of a high-fat diet results in obesity in the adult offspring. In this study, we investigated whether diet-induced thermogenesis is altered as a result of such nutritional mismatch. Methods: Female MF-1 mice were fed a normal protein (NP, 18 % casein) or a protein-restricted (PR, 9 % casein) diet throughout pregnancy and lactation. After weaning, male offspring of both groups were fed either a high-fat diet (HF; 45 % kcal fat) or standard chow (C, 7 % kcal fat) to generate the NP/C, NP/HF, PR/C and PR/HF adult offspring groups (n = 7-11 per group). Results: PR/C and NP/C offspring have similar body weights at 30 weeks of age. Postweaning HF feeding resulted in significantly heavier NP/HF offspring (P <0.01), but not in PR/HF offspring, compared with their chow-fed counterparts. However, the PR/HF offspring exhibited greater adiposity (P <0.01) v the NP/HF group. The NP/HF offspring had increased energy expenditure and increased mRNA expression of uncoupling protein-1 and β-3 adrenergic receptor in the interscapular brown adipose tissue (iBAT) compared with the NP/C mice (both at P <0.01). No such differences in energy expenditure and iBAT gene expression were observed between the PR/HF and PR/C offspring. Conclusions: These data suggest that a mismatch between maternal diet during pregnancy and lactation, and the postweaning diet of the offspring, can attenuate diet-induced thermogenesis in the iBAT, resulting in the development of obesity in adulthood. © 2014 Springer-Verlag Berlin Heidelberg.
Resumo:
To investigate the neurotoxic effects of aluminium (Al) Al was administered: 1) in the diet of the rat (30 mg Al/kg body weight for 6 weeks); 2) as a suspension of aluminium acetate in drinking water of the rat for 3 months and 3) in a long-term study in the mouse in which aluminosilicates were incorporated into a pelleted diet (1035 mg/kg of food over 23 months). In the latter treatment, increased Al was combined with a reduction in calcium and magnesium; a treatment designed to increase absorption of Al into the body. Administration of Al in the drinking water significantly reduced total brain biopterins and BH4 synthesis. However, no significant affect of Al in the diet on total biopterins or BH4 synthesis was found either in the rat or in the long-term study in the mouse. In addition, in the mouse no significant effects of the Al diet on levels of noradrenaline, serotonin, dopamine, 5-HIAA or CAT could be demonstrated. Hence, the occurrence of brain alterations may depend on the Al species present and the method of administration. Al salts in drinking water may increase brain tissue levels compared with the administration of a more insoluble species. Since alterations in biopterin metabolism are also a feature of Alzheimer's disease (AD) these results support the hypothesis that Al in the water supply may be a factor in AD.