9 resultados para Diamond-like Carbon, Thin Film, Raman Spectroscpoy, Disorder

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is dedicated to the production and analysis of thin hydrogenated amorphous carbon films. A cascaded arc plasma source was used to produce a high density plasma of hydrocarbon radicals that deposited on a substrate at ultra low energies. The work was intended to create a better understanding of the mechanisms responsible for the film formation, by an extensive analysis on the properties of the films in correlation with the conditions used in the plasma cell. Two different precursors were used: methane and acetylene. They revealed a very different picture for the mechanism of film formation and properties. Methane was less successful, and the films formed were soft, with poor adhesion to the substrate and decomposing with time. Acetylene was the better option, and the films formed in this case were harder, with better adhesion to the substrate and stable over time. The plasma parameters could be varied to change the character of films, from polymer-like to diamond-like carbon. Films deposited from methane were grown at low deposition rates, which increased with the increase in process pressure and source power and decreased with the increase in substrate temperature and in hydrogen fraction in the carrier gas. The films had similar hydrogen content, sp3 fractions, average roughness (Ra) and low hardness. Above a deposition temperature of 350°C graphitization occurred - an increase in the sp2 fraction. A deposition mechanism was proposed, based upon the reaction product of the dissociative recombination of CH4+. There were small differences between the chemistries in the plasma at low and high precursor flow rates and low and high substrate temperatures; all experimental conditions led to formation of films that were either polymer-like, soft amorphous hydrogenated carbon or graphitic-like in structure. Films deposited from acetylene were grown at much higher deposition rates on different substrates (silicon, glass and plastics). The film quality increased noticeably with the increase of relative acetylene to argon flow rate, up to a certain value, where saturation occurred. With the increase in substrate temperature and the lowering of the acetylene injection ring position further improvements in film quality were achieved. The deposition process was scaled up to large area (5 x 5 cm) substrates in the later stages of the project. A deposition mechanism was proposed, based upon the reaction products of the dissociative recombination of C2H2 +. There were large differences between the chemistry in the plasma at low and medium/high precursor flow rates. This corresponded to large differences in film properties from low to medium flow rates, when films changed their character from polymer-like to diamond-like, whereas the differences between films deposited at medium and high precursor flow rates were small. Modelling of the film growth on silicon substrates was initiated and it explained the formation of sp2 and sp3 bonds at these very low energies. However, further improvements to the model are needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogenated amorphous carbon films with diamond like structures have been formed on different substrates at very low energies and temperatures by a plasma enhanced chemical vapor deposition process employing acetylene as the precursor gas. The plasma source was of a cascaded arc type with Ar as carrier gas. The films were grown at very high deposition rates. Deposition on Si, glass and plastic substrates has been studied and the films characterized in terms of sp3 content, roughness, hardness, adhesion and optical properties. Deposition rates up to 20 nm/s have been achieved at substrate temperatures below 100°C. The typical sp3 content of 60-75% in the films was determined by X-ray generated Auger electron spectroscopy. Hardness, reduced modulus and adhesion were measured using a MicroMaterials Nano Test Indenter/Scratch tester. Hardness was found to vary from 4 to 13 GPa depending on deposition conditions. Adhesion was significantly influenced by the substrate temperature and in situ DC cleaning. Hydrogen content in the film was measured by a combination of the Fourier transform infrared and Rutherford backscattering techniques. Advantages of these films are: low ion energy and deposition temperature, very high deposition rates, low capital cost of the equipment and the possibility of film properties being tailored according to the desired application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presented a detailed research work on diamond materials. Chapter 1 is an overall introduction of the thesis. In the Chapter 2, the literature review on the physical, chemical, optical, mechanical, as well as other properties of diamond materials are summarised. Followed by this chapter, several advanced diamond growth and characterisation techniques used in experimental work are also introduced. Then, the successful installation and applications of chemical vapour deposition system was demonstrated in Chapter 4. Diamond growth on a variety of different substrates has been investigated such as on silicon, diamond-like carbon or silica fibres. In Chapter 5, the single crystalline diamond substrate was used as the substrate to perform femtosecond laser inscription. The results proved the potentially feasibility of this technique, which could be utilised in fabricating future biochemistry microfluidic channels on diamond substrates. In Chapter 6, the hydrogen-terminated nanodiamond powder was studied using impedance spectroscopy. Its intrinsic electrical properties and its thermal stability were presented and analysed in details. As the first PhD student within Nanoscience Research Group at Aston, my initial research work was focused on the installation and testing of the microwave plasma enhanced chemical vapour deposition system (MPECVD), which will be beneficial to all the future researchers in the group. The fundamental of the on MPECVD system will be introduced in details. After optimisation of the growth parameters, the uniform diamond deposition has been achieved with a good surface coverage and uniformity. Furthermore, one of the most significant contributions of this work is the successful pattern inscription on diamond substrates by femtosecond laser system. Previous research of femtosecond laser inscription on diamond was simple lines or dots, with little characterisation techniques were used. In my research work, the femtosecond laser has been successfully used to inscribe patterns on diamond substrate and fully characterisation techniques, e.g. by SEM, Raman, XPS, as well as AFM, have been carried out. After the femtosecond laser inscription, the depth of microfluidic channels on diamond film has been found to be 300~400 nm, with a graphitic layer thickness of 165~190 nm. Another important outcome of this work is the first time to characterise the electrical properties of hydrogenterminated nanodiamond with impedance spectroscopy. Based on the experimental evaluation and mathematic fitting, the resistance of hydrogen-terminated nanodiamond reduced to 0.25 MO, which were four orders of magnitude lower than untreated nanodiamond. Meanwhile, a theoretical equivalent circuit has been proposed to fit the results. Furthermore, the hydrogenterminated nanodiamond samples were annealed at different temperature to study its thermal stability. The XPS and FTIR results indicate that hydrogen-terminated nanodiamond will start to oxidize over 100ºC and the C-H bonds can survive up to 400ºC. This research work reports the fundamental electrical properties of hydrogen-terminated nanodiamond, which can be used in future applications in physical or chemical area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical, physical and chemical changes in the surface of commercial thin film metal evaporated magnetic recording media have been correlated to recording error and signal degradation measurements. Modified and adapted commercial Hi-8 video recorders have been used for sample generation whilst analytical techniques such as SXPS,IMS and SEM have been employed in the surface characterisation. The durability of the media was assessed through stop motion (still frame) and cycling tests, where error growth and signal degradation were measured as a function of running time. The tests were performed under ambient (22°C, 40% RH) and high humidity (22°C, 80% RH) conditions. Characterisation of the lubricant layer on each tape was performed through models based on XPS and angle resolved XPS. The lubricant thickness can significantly affect the durability and signal output level of a thin film tape and thus it is important that reliable quantification can be achieved. Various models were considered for determining the lubricant thickness although ultimately, the most suitable technique was deemed to be a model that assumed a uniform layer structure. In addition to thin film metal evaporated media, equivalent durability tests and surface analysis experiments were performed using a commercial metal particle tape in order that comparisons could be made between the two types of recording media. The signal performance of the thin film metal evaporated media was found to be quite different from that for the metal particle tape since dropout errors and signal degradation increased at a much earlier stage. Extensive surface analyses enabled the mechanisms responsible for media failure and error growth to be identified in the ME and MP tapes and these were found to result from cyclic stressing and fatigue on the immediate substrate of the media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possible evaporation of lubricant in fluid film bearings has been investigated theoretically and by experiment using a radial flow hydrostatic bearing supplied with liquid refrigerant R114. Good correlation between measured and theoretical values was obtained using a bespoke computational fluid dynamic model in which the flow was assumed to be laminar and adiabatic. The effects of viscous dissipation and vapour generation within the fluid film are fully accounted for by applying a fourth order Runge-Kutta routine to satisfy the radial and filmwise transverse constraints of momentum, energy and mass conservation. The results indicate that the radial velocity profile remains parabolic while the flow remains in the liquid phase and that the radial rate of enthalpy generation is then constant across the film at a given radius. The results also show that evaporation will commence at a radial location determined by geometry and flow conditions and in fluid layers adjacent to the solid boundaries. Evaporation is shown to progress in the radial direction and the load carrying capacity of such a bearing is reduced significantly. Expressions for the viscosity of the liquid/vapour mixture found in the literature survey have not been tested against experimental data. A new formulation is proposed in which the suitable choice of a characteristic constant yields close representation to any of these expressions. Operating constraints imposed by the design of the experimental apparatus limited the extent of the surface over which evaporation could be obtained, and prevented clear identification of the most suitable relationship for the viscosity of the liquid/vapour mixture. The theoretical model was extended to examine the development of two phase flow in a rotating shaft face seal of uniform thickness. Previous theoretical analyses have been based on the assumption that the radial velocity profile of the flow is always parabolic, and that the tangential component of velocity varies linearly from the value at the rotating surface, to zero at the stationary surface. The computational fluid dynamic analysis shows that viscous shear and dissipation in the fluid adjacent to the rotating surface leads to developing evaporation with a consequent reduction in tangential shear forces. The tangential velocity profile is predicted to decay rapidly through the film, exhibiting a profile entirely different to that assumed by previous investigators. Progressive evaporation takes place close to the moving wall and does not occur completely at a single radial location, as has been claimed in earlier work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of novel block copolymers, processable from single organic solvents and subsequently rendered amphiphilic by thermolysis, have been synthesized using Grignard metathesis (GRIM) and reversible addition-fragmentation chain transfer (RAFT) polymerizations and azide-alkyne click chemistry. This chemistry is simple and allows the fabrication of well-defined block copolymers with controllable block lengths. The block copolymers, designed for use as interfacial adhesive layers in organic photovoltaics to enhance contact between the photoactive and hole transport layers, comprise printable poly(3-hexylthiophene)-block-poly(neopentyl p-styrenesulfonate), P3HT-b-PNSS. Subsequently, they are converted to P3HT-b-poly(p-styrenesulfonate), P3HT-b-PSS, following deposition and thermal treatment at 150 °C. Grazing incidence small- and wide-angle X-ray scattering (GISAXS/GIWAXS) revealed that thin films of the amphiphilic block copolymers comprise lamellar nanodomains of P3HT crystallites that can be pushed further apart by increasing the PSS block lengths. The approach of using a thermally modifiable block allows deposition of this copolymer from a single organic solvent and subsequent conversion to an amphiphilic layer by nonchemical means, particularly attractive to large scale roll-to-roll industrial printing processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The femtosecond laser modification of refractive index in amorphous Al2O3:Nd thin film prepared by rf magnetron sputtering is investigated. Modifications of the refractive index in a sample with a single Al2O3:Nd layer and in a sample composed of the Al2O3:Nd layer and SiO2 layer on the top were compared. Advantages arising from addition of the SiO2 layer are shown. The film was patterned in order to form an active waveguide. Waveguide loss and mode composition were investigated experimentally and theoretically. Spectrum and kinetics of luminescence in the region of 1.06 μm were measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of present paper is to present the latest results on investigations of the carbon thin film deposited by Thermionic Vacuum Arc (TVA) method and laser pyrolysis. X-ray photoelectron spectroscopy (XPS) and X-ray generated Auger electron spectroscopy (XAES) were used to determine composition and sp2 to sp3 ratios in the outer layers of the film surfaces. The analyses were conducted in a Thermoelectron ESCALAB 250 electron spectrometer equipped with a hemispherical sector energy analyser. Monochromated Al K X-radiation was employed for the XPS examination, at source excitation energy of 15 KeV and emission current of 20 mA. Analyzer pass energy of 20 eV with step size of 0.1 eV and dwell time of 100 ms was used throughout. © 2010 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is devoted to the tribology at the head~to~tape interface of linear tape recording systems, OnStream ADRTM system being used as an experimental platform, Combining experimental characterisation with computer modelling, a comprehensive picture of the mechanisms involved in a tape recording system is drawn. The work is designed to isolate the mechanisms responsible for the physical spacing between head and tape with the aim of minimising spacing losses and errors and optimising signal output. Standard heads-used in ADR current products-and prototype heads- DLC and SPL coated and dummy heads built from a AI203-TiC and alternative single-phase ceramics intended to constitute the head tape-bearing surface-are tested in controlled environment for up to 500 hours (exceptionally 1000 hours), Evidences of wear on the standard head are mainly observable as a preferential wear of the TiC phase of the AI203-TiC ceramic, The TiC grains are believed to delaminate due to a fatigue wear mechanism, a hypothesis further confirmed via modelling, locating the maximum von Mises equivalent stress at a depth equivalent to the TiC recession (20 to 30 nm). Debris of TiC delaminated residues is moreover found trapped within the pole-tip recession, assumed therefore to provide three~body abrasive particles, thus increasing the pole-tip recession. Iron rich stain is found over the cycled standard head surface (preferentially over the pole-tip and to a lesser extent over the TiC grains) at any environment condition except high temperature/humidity, where mainly organic stain was apparent, Temperature (locally or globally) affects staining rate and aspect; stain transfer is generally promoted at high temperature. Humidity affects transfer rate and quantity; low humidity produces, thinner stains at higher rate. Stain generally targets preferentially head materials with high electrical conductivity, i.e. Permalloy and TiC. Stains are found to decrease the friction at the head-to-tape interface, delay the TiC recession hollow-out and act as a protective soft coating reducing the pole-tip recession. This is obviously at the expense of an additional spacing at the head-to-tape interface of the order of 20 nm. Two kinds of wear resistant coating are tested: diamond like carbon (DLC) and superprotective layer (SPL), 10 nm and 20 to 40 nm thick, respectively. DLC coating disappears within 100 hours due possibly to abrasive and fatigue wear. SPL coatings are generally more resistant, particularly at high temperature and low humidity, possibly in relation with stain transfer. 20 nm coatings are found to rely on the substrate wear behaviour whereas 40 nm coatings are found to rely on the adhesive strength at the coating/substrate interface. These observations seem to locate the wear-driving forces 40 nm below the surface, hence indicate that for coatings in the 10 nm thickness range-· i,e. compatible with high-density recording-the substrate resistance must be taken into account. Single-phase ceramic as candidate for wear-resistant tape-bearing surface are tested in form of full-contour dummy-heads. The absence of a second phase eliminates the preferential wear observed at the AI203-TiC surface; very low wear rates and no evidence of brittle fracture are observed.