8 resultados para Diabetics
em Aston University Research Archive
Resumo:
Purpose To investigate ocular and systemic correlates of endothelial function in the normoglycaemic offspring of Type 2 Diabetics (T2DM). Methods Healthy participants aged between 25-65 with (n=30) and without (n=39) a family history were recruited. Retinal vessel reactivity was assessed by using the Retinal Vessel Analyser (RVA, Imedos GmBH). In addition, systemic endothelial function was assessed by using the flow mediated dilation (FMD) technique. Results Parametric testing showed no significant differences in anthropometric, blood assay or ocular and systemic function between both groups (p>0.05). The average maximum dilation in the measured retinal artery correlated significantly with the maximum dilation of the measured brachial artery (p=0.002 R=0.55) in healthy controls; however, this was not true for subjects with family history of T2DM. Conclusion Subjects with family history of T2DM show possibly early signs of endothelial dysfunction that, in certain conditions, could contribute to the higher risk of this group of developing similar pathology to their parents.
Resumo:
Diabetic nephropathy affects 30-40% of diabetics leading to end-stage kidney failure through progressive scarring and fibrosis. Previous evidence suggests that tissue transglutaminase (tTg) and its protein cross-link product epsilon(gamma-glutamyl)lysine contribute to the expanding renal tubulointerstitial and glomerular basement membranes in this disease. Using an in vitro cell culture model of renal proximal tubular epithelial cells we determined the link between elevated glucose levels with changes in expression and activity of tTg and then, by using a highly specific site directed inhibitor of tTg (1,3-dimethyl-2[(oxopropyl)thio]imidazolium), determined the contribution of tTg to glucose-induced matrix accumulation. Exposure of cells to 36 mm glucose over 96 h caused an mRNA-dependent increase in tTg activity with a 25% increase in extracellular matrix (ECM)-associated tTg and a 150% increase in ECM epsilon(gamma-glutamyl)lysine cross-linking. This was paralleled by an elevation in total deposited ECM resulting from higher levels of deposited collagen and fibronectin. These were associated with raised mRNA for collagens III, IV, and fibronectin. The specific site-directed inhibitor of tTg normalized both tTg activity and ECM-associated epsilon(gamma-glutamyl)lysine. Levels of ECM per cell returned to near control levels with non-transcriptional reductions in deposited collagen and fibronectin. No changes in transforming growth factor beta1 (expression or biological activity) occurred that could account for our observations, whereas incubation of tTg with collagen III indicated that cross-linking could directly increase the rate of collagen fibril/gel formation. We conclude that Tg inhibition reduces glucose-induced deposition of ECM proteins independently of changes in ECM and transforming growth factor beta1 synthesis thus opening up its possible application in the treatment other fibrotic and scarring diseases where tTg has been implicated.
Resumo:
The metabolic function of the glyoxalase system was investigated in (a) the differentiation and proliferation of human tumour cells in vitro, (b) the cell-free assembly of microtubules and (c) in the red blood cells during hyperglycaemia associated with Diabetes Mellitus. Chemically-induced differentiation of human promyelocytic HL60 leukaemia cells to neutrophils, and K562 erythroleukaemia cells, was accompanied by a decrease and an increase in the activity of glyoxalase I, respectively. Growth-arrest of Burkitt's lymphoma Raji cells and GM892 lymphoblastoid cells was accompanied by an increase and a decrease in the activity of glyoxalase I respectively. However, differentiation and growth arrest generally proceeded with an increase in the activity of glyoxalase II. Glyoxalase I activity did not consistently correlate with cell differentiation or proliferation status; hence, it is unlikely that glyoxalase I activity is either an indicator or a regulator of cell differentiation or proliferation. Conversely, glyoxalase II activity consistently increased during cell differentiation and growth-arrest and may be both an indicator and regulator of cell differentiation or proliferation. This may be related to the control of cellular microtubule assembly. S-D-Lactoylglutathione potentiated the cell-free, GTP-promoted assembly of microtubules. The effect was dose-related and was inhibited by glyoxalase II. During assembly, S-D-lactoylglutathione was consumed. This suggests that the glyoxalase system, through the influence of S-D-lactoylglutathione, may regulate the assembly of microtubules in cellular systems The whole blood concentrations of methylglyoxal and S-D-lactoylglutathione were increased in Diabetes Mellitus. There was no significant difference between red blood cell glyoxalase activities in diabetics, compared to healthy controls. However, insulin-dependent diabetic patients with retinopathy had a significantly higher glyoxalase I activity and a lower glyoxalase II activity, than patients without retinopathy. Diabetic retinopathy correlated with high glyoxalase I activity and low glyoxalase II activity and suggests the glyoxalase system may be involved in the development of diabetic complications.
Resumo:
I was recently part of a small committee looking at higher qualifications in contact lens practice and the discussion turned to future technologies. There was mention of different materials and different applications of contact lenses. Drug delivery with contact lenses was discussed as this has been talked about in the literature for a while. The first paper I could find that talked about using contact lenses for drug delivery dates back over 40 years. There was a review paper in CLAE in 2008 that looked specifically at this too [1]. However, where are these products? Why are we not seeing them in the market place? Maybe the technology is not quite there yet, or maybe patents are prohibiting usage or maybe the market is not big enough to develop such products? We do have lenses on the market with slow release of lubricating agents but not therapeutic agents used for ocular or systemic conditions. Contact lenses with pathogen detectors may be part of our contact lens armoury of the future and again we can already see papers in the literature that have trialled this technology for glucose monitoring in diabetics or lactate concentration in the tear film. Future contact lenses may incorporate better optics based on aberration control and we see this starting to emerge with aspheric designs designed to minimise spherical aberration. Irregular corneas can be fitted with topography based designs and again this technology exists and is being used by some manufacturers in their designs already. Moreover, the topography based fitting of irregular corneas is certainly something we see a lot of today and CLAE has seen many articles related to this over the last decade or so. What about further into the future? Well one interesting area must the 3-dimensional contact lenses, or contact lenses with electronic devices built in that simulate a display screen. A little like the virtual display spectacles that are already sold by electronics companies. It does not take much of a stretch of the imagination to see a large electronic company taking this technology on and making it viable. Will we see people on the train watching movies on these electronic virtual reality contact lenses? I think we will, but when is harder to know.
Resumo:
Background: Proliferative diabetic retinopathy (PDR) may be a response to abnormal angiogenic growth factors such as vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang-2), and the soluble angiopoietin receptor tie-2. The authors hypothesised the following: (a) there are differences in plasma levels of these growth factors in different grades of diabetic retinopathy; and (b) that the effects of intervention with panretinal laser photocoagulation (PRP) for PDR, and angiotensin receptor blockade (using eprosartan) for patients with other grades of diabetic retinopathy will be to reduce levels of the growth factors. Methods: Cross sectional and interventional study (using PRP and eprosartan) in diabetic patients. VEGF, Ang-2, and tie-2 were measured by ELISA. Results: VEGF (p<0.001) and Ang-2 levels (p<0.001) were significantly higher in 93 diabetic patients compared to 20 healthy controls, with the highest levels in grade 2 and grade 3 diabetic retinopathy (p<0.05). Tie-2 was lower in diabetics compared to controls (p = 0.008), with no significant differences between the diabetic subgroups. Overall, VEGF significantly correlated with Ang-2 (p<0.001) and tie-2 (p = 0.004) but the correlation between Ang-2 and tie-2 levels was not significant (p = 0.065). Among diabetic patients only, VEGF levels were significantly correlated with Ang-2 (p<0.001) and tie-2 (p<0.001); the correlation between Ang-2 and tie-2 levels was also significant (p<0.001). There were no statistically significant effects of laser photocoagulation on plasma VEGF, Ang-2, and tie-2 in the 19 patients with PDR, or any effects of eprosartan in the 28 patients with non-proliferative diabetic retinopathy. Conclusion: Increased plasma levels of VEGF and Ang-2, as well as lower soluble tie-2, were found in diabetic patients. The highest VEGF and Ang-2 levels were seen among patients with pre-proliferative and proliferative retinopathy, but there was no relation of tie-2 to the severity of retinopathy. As the majority of previous research into Ang-2 and tie-2 has been in relation to angiogenesis and malignancy, the present study would suggest that Ang-2 and tie-2 may be used as potential indices of angiogenesis in diabetes mellitus (in addition to VEGF) and may help elucidate the role of the angiopoietin/tie-2 system in this condition.
Resumo:
The respective methaemoglobin forming and GSH depleting capabilities of monoacetyl dapsone hydroxylamine (MADDS-NHOH) and dapsone hydroxylamine (DDS-NHOH) were compared in human diabetic and non-diabetic erythrocytes in vitro with a view to select the most potent agent for future oxidative stress and antioxidant evaluation studies. Administration of both metabolites to non-diabetic erythrocytes over the 20 min period of the study resulted in significantly more methaemoglobin formation at all four time points compared with the diabetic erythrocytes (P<0.0001). At all four time points, significantly more methaemoglobin was formed in response to MADDS-NHOH in non-diabetic cells compared with the effects of DDS-NHOH on diabetic erythrocytes (P<0.0001). At the 5 and 10 min time points, significantly more methaemglobin was formed in non-diabetic cells in the presence of MADDS-NHOH compared with DDS-NHOH (P<0.05). At the 5 min time point only, significantly more methaemoglobin was formed in the presence of MADDS-NHOH in diabetic cells compared with that of DDS-NHOH (P<0.01). However, compared with diabetic control GSH levels, the presence of DDS-NHOH caused a significant depletion in GSH at 5, 10 and 20 min time points in diabetic cells (P<0.001). In addition, the presence of DDS-NHOH caused a significant reduction in GSH levels in diabetic cells in comparison with those of non-diabetics at the 5, 10 and 20 min, (P<0.005). DDS-NHOH was also associated with a significant depletion of GSH levels in diabetic cells compared with those of non-diabetic control erythrocytes (P<0.0001). The presence of MADDS-NHOH in diabetic erythrocytes led to a significant reduction in GSH levels at the 20 min time point compared with those of non-diabetics (P<0.001), but there were no significant differences at the 5, 10 and 15 min points. Due to its greater GSH-depleting action, DDS-NHOH will be selected for future use in the oxidative stress assessment in diabetic erythrocytes. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Eight otherwise healthy diabetic volunteers took a daily antioxidant supplement consisting of vitamin E (200 IU), vitamin C (250 mg) and α-lipoic acid (90 mg) for a period of 6 weeks. Diabetic dapsone hydroxylamine-mediated methaemoglobin formation and resistance to erythrocytic thiol depletion was compared with age and sex-matched non-diabetic subjects. At time zero, methaemoglobin formation in the non-diabetic subjects was greater at all four time points compared with that of the diabetic subjects. Resistance to glutathione depletion was initially greater in non-diabetic compared with diabetic samples. Half-way through the study (3 weeks), there were no differences between the two groups in methaemoglobin formation and thiol depletion in the diabetic samples was now lower than the non-diabetic samples at 10 and 20 min. At 6 weeks, diabetic erythrocytic thiol levels remained greater than those of non-diabetics. HbA1c values were significantly reduced in the diabetic subjects at 6 weeks compared with time zero values. At 10 weeks, 4 weeks after the end of supplementation, the diabetic HbA1c values significantly increased to the point where they were not significantly different from the time zero values. Total antioxidant status measurement (TAS) indicated that diabetic plasma antioxidant capacity was significantly improved during antioxidant supplementation. Conversion of α-lipoic acid to dihydrolipoic acid (DHLA) in vivo led to potent interference in a standard fructosamine assay kit, negating its use in this study. This report suggests that triple antioxidant therapy in diabetic volunteers attenuates the in vitro experimental oxidative stress of methaemoglobin formation and reduces haemoglobin glycation in vivo. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Purpose: This work investigates how short-term changes in blood glucose concentration affect the refractive components of the diabetic eye in patients with long-term Type 1 and Type 2 diabetes. Methods: Blood glucose concentration, refractive error components (mean spherical equivalent MSE, J0, J45), central corneal thickness (CCT), anterior chamber depth (ACD), crystalline lens thickness (LT), axial length (AL) and ocular aberrations were monitored at two-hourly intervals over a 12-hour period in: 20 T1DM patients (mean age ± SD) 38±14 years, baseline HbA1c 8.6±1.9%; 21 T2DM patients (mean age ± SD) 56±11 years, HbA1c 7.5±1.8%; and in 20 control subjects (mean age ± SD) 49±23 years, HbA1c 5.5±0.5%. The refractive and biometric results were compared with the corresponding changes in blood glucose concentration. Results: Blood glucose concentration at different times was found to vary significantly within (p<0.0005) and between groups (p<0.0005). However, the refractive error components and ocular aberrations were not found to alter significantly over the day in either the diabetic patients or the control subjects (p>0.05). Minor changes of marginal statistical or optical significance were observed in some biometric parameters. Similarly there were some marginally significant differences between the baseline biometric parameters of well-controlled and poorly-controlled diabetic subjects. Conclusion: This work suggests that normal, short-term fluctuations (of up to about 6 mM/l on a timescale of a few hours) in the blood glucose levels of diabetics are not usually associated with acute changes in refractive error or ocular wavefront aberrations. It is therefore possible that factors other than refractive error fluctuations are sometimes responsible for the transient visual problems often reported by diabetic patients. © 2012 Huntjens et al.