24 resultados para Developmental Surface Dyslexia

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis tested the hypothesis of Stanovich, Siegel, & Gottardo (1997) that surface dyslexia is the result of a milder phonological deficit than that seen in phonological dyslexia coupled with reduced reading experience. We found that a group of adults with surface dyslexia showed a phonological deficit that was commensurate with that shown by a group of adults with phonological dyslexia (matched for chronological age and verbal and non-verbal IQ) and normal reading experience. We also showed that surface dyslexia cannot be accounted for by a semantic impairment or a deficit in the verbal learning and recall of lexical-semantic information (such as meaningful words), as both dyslexic subgroups performed the same. This study has replicated the results of our published study that surface dyslexia is not the consequence of a mild retardation or reduced learning opportunities but a separate impairment linked to a deficit in written lexical learning, an ability needed to create novel lexical representations from a series of unrelated visual units, which is independent from the phonological deficit (Romani, Di Betta, Tsouknida & Olson, 2008). This thesis also provided evidence that a selective nonword reading deficit in developmental dyslexia persists beyond poor phonology. This was shown by finding a nonword reading deficit even in the presence of normal regularity effects in the dyslexics (when compared to both reading and spelling-age matched controls). A nonword reading deficit was also found in the surface dyslexics. Crucially, this deficit was as strong as in the phonological dyslexics despite better functioning of the sublexical route for the former. These results suggest that a nonword reading deficit cannot be solely explained by a phonological impairment. We, thus, suggested that nonword reading should also involve another ability relating to the processing of novel visual orthographic strings, which we called 'orthographic coding'. We then investigated the ability to process series of independent units within multi-element visual arrays and its relationship with reading and spelling problems. We identified a deficit in encoding the order of visual sequences (involving both linguistic and nonlinguistic information) which was significantly associated with word and nonword processing. More importantly, we revealed significant contributions to orthographic skills in both dyslexic and control individuals, even after age, performance IQ and phonological skills were controlled. These results suggest that spelling and reading do not only tap phonological skills but also order encoding skills.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In a group of adult dyslexics word reading and, especially, word spelling are predicted more by what we have called lexical learning (tapped by a paired-associate task with pictures and written nonwords) than by phonological skills. Nonword reading and spelling, instead, are not associated with this task but they are predicted by phonological tasks. Consistently, surface and phonological dyslexics show opposite profiles on lexical learning and phonological tasks. The phonological dyslexics are more impaired on the phonological tasks, while the surface dyslexics are equally or more impaired on the lexical learning tasks. Finally, orthographic lexical learning explains more variation in spelling than in reading, and subtyping based on spelling returns more interpretable results than that based on reading. These results suggest that the quality of lexical representations is crucial to adult literacy skills. This is best measured by spelling and best predicted by a task of lexical learning. We hypothesize that lexical learning taps a uniquely human capacity to form new representations by recombining the units of a restricted set.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

DDevelopmental dyslexia is a reading disorder associated with impaired postural control. However, such deficits are also found in attention deficit hyperactivity disorder (ADHD), which is present in a substantial subset of dyslexia diagnoses. Very few studies of balance in dyslexia have assessed ADHD symptoms, thereby motivating the hypothesis that such measures can account for the group differences observed. In this study, we assessed adults with dyslexia and similarly aged controls on a battery of cognitive, literacy and attention measures, alongside tasks of postural stability. Displacements of centre of mass to perturbations of posture were measured in four experimental conditions using digital optical motion capture. The largest group differences were obtained in conditions where cues to the support surface were reduced. Between-group differences in postural sway and in sway variability were largely accounted for by co-varying hyperactivity and inattention ratings, however. These results therefore suggest that postural instability in dyslexia is more strongly associated with symptoms of ADHD than to those specific to reading impairment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the ability to learn new words in a group of 22 adults with developmental dyslexia/dysgraphia and the relationship between their learning and spelling problems. We identified a deficit that affected the ability to learn both spoken and written new words (lexical learning deficit). There were no comparable problems in learning other kinds of representations (lexical/semantic and visual) and the deficit could not be explained in terms of more traditional phonological deficits associated with dyslexia (phonological awareness, phonological STM). Written new word learning accounted for further variance in the severity of the dysgraphia after phonological abilities had been partialled out. We suggest that lexical learning may be an independent ability needed to create lexical/formal representations from a series of independent units. Theoretical and clinical implications are discussed. © 2005 Psychology Press Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Developmental dyslexia is typically defined by deficits in phonological skills, but it is also associated with anomalous performance on measures of balance. Although balance assessments are included in several screening batteries for dyslexia, the association between impairments in literacy and deficits in postural stability could be due to the high co-occurrence of dyslexia with other developmental disorders in which impairments of motor behaviour are also prevalent. Methods: We identified 17 published studies that compared balance function between dyslexia and control samples and obtained effect-sizes for each. Contrast and association analyses were used to quantify the influence of hypothesised moderator variables on differences in effects across studies. Results: The mean effect-size of the balance deficit in dyslexia was .64 (95% CI = .44-.78) with heterogeneous findings across the population of studies. Probable co-occurrence of other developmental disorders and variability in intelligence scores in the dyslexia samples were the strongest moderator variables of effect-size. Conclusions: Balance deficits are associated with dyslexia, but these effects are apparently more strongly related to third variables other than to reading ability. Deficits of balance may indicate increased risk of developmental disorder, but are unlikely to be uniquely associated with dyslexia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The possibility that developmental dyslexia results from low-level sensory processing deficits has received renewed interest in recent years. Opponents of such sensory-based explanations argue that dyslexia arises primarily from phonological impairments. However, many behavioural correlates of dyslexia cannot be explained sufficiently by cognitive-level accounts and there is anatomical, psychometric and physiological evidence of sensory deficits in the dyslexic population. This thesis aims to determine whether the low-level (pre-attentive) processing of simple auditory stimuli is disrupted in compensated adult dyslexics. Using psychometric and neurophysiological measures, the nature of auditory processing abnormalities is investigated. Group comparisons are supported by analysis of individual data in order to address the issue of heterogeneity in dyslexia. The participant pool consisted of seven compensated dyslexic adults and seven age and IQ matched controls. The dyslexic group were impaired, relative to the control group, on measures of literacy, phonological awareness, working memory and processing speed. Magnetoencephalographic recordings were conducted during processing of simple, non-speech, auditory stimuli. Results confirm that low-level auditory processing deficits are present in compensated dyslexic adults. The amplitude of N1m responses to tone pair stimuli were reduced in the dyslexic group. However, there was no evidence that manipulating either the silent interval or the frequency separation between the tones had a greater detrimental effect on dyslexic participants specifically. Abnormal MMNm responses were recorded in response to frequency deviant stimuli in the dyslexic group. In addition, complete stimulus omissions, which evoked MMNm responses in all control participants, failed to elicit significant MMNm responses in all but one of the dyslexic individuals. The data indicate both a deficit of frequency resolution at a local level of auditory processing and a higher-level deficit relating to the grouping of auditory stimuli, relevant for auditory scene analysis. Implications and directions for future research are outlined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the performance of a group of adult dyslexics and matched controls in an array-matching task where two strings of either consonants or symbols are presented side by side and have to be judged to be the same or different. The arrays may differ either in the order or identity of two adjacent characters. This task does not require naming – which has been argued to be the cause of dyslexics’ difficulty in processing visual arrays – but, instead, has a strong serial component as demonstrated by the fact that, in both groups, Reaction times (RTs) increase monotonically with position of a mismatch. The dyslexics are clearly impaired in all conditions and performance in the identity conditions predicts performance across orthographic tasks even after age, performance IQ and phonology are partialled out. Moreover, the shapes of serial position curves are revealing of the underlying impairment. In the dyslexics, RTs increase with position at the same rate as in the controls (lines are parallel) ruling out reduced processing speed or difficulties in shifting attention. Instead, error rates show a catastrophic increase for positions which are either searched later or more subject to interference. These results are consistent with a reduction in the attentional capacity needed in a serial task to bind together identity and positional information. This capacity is best seen as a reduction in the number of spotlights into which attention can be split to process information at different locations rather than as a more generic reduction of resources which would also affect processing the details of single objects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The goal of this project was to investigate the neural correlates of reading impairment in dyslexia as hypothesised by the main theories – the phonological deficit, visual magnocellular deficit and cerebellar deficit theories, with emphasis on individual differences. This research took a novel approach by: 1) contrasting the predictions in one sample of participants with dyslexia (DPs); 2) using a multiple-case study (and between-group comparisons) to investigate differences in BOLD between each DP and the controls (CPs); 3) demonstrating a possible relationship between reading impairment and its hypothesised neural correlates by using fMRI and a reading task. The multiple-case study revealed that the neural correlates of reading in dyslexia in all cases are not in agreement with the predictions of a single theory. The results show striking individual differences - even, where the neural correlates of reading in two DPs are consistent with the same theory, the areas can differ. A DP can exhibit under-engagement in an area in word, but not in pseudoword reading and vice versa, demonstrating that underactivation in that area cannot be interpreted as a ‘developmental lesion’. Additional analyses revealed complex results. Within-group analyses between behavioural measures and BOLD showed correlations in the predicted regions, areas outside ROI, and lack of correlations in some predicted areas. Comparisons of subgroups which differed on Orthography Composite supported the MDT, but only for Words. The results suggest that phonological scores are not a sufficient predictor of the under-engagement of phonological areas during reading. DPs and CPs exhibited correlations between Purdue Pegboard Composite and BOLD in cerebellar areas only for Pseudowords. Future research into reading in dyslexia should use a more holistic approach, involving genetic and environmental factors, gene by environment interaction, and comorbidity with other disorders. It is argued that multidisciplinary research, within the multiple-deficit model holds significant promise here.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent evidence has suggested cerebellar anomalies in developmental dyslexia. Therefore, we investigated cerebellar morphology in subjects with documented reading disabilities. We obtained T1-weighted magnetic resonance images in the coronal and sagittal planes from 11 males with prior histories of developmental dyslexia, and nine similarly-aged male controls. Proton magnetic resonance spectra (TE=136 ms, TR=2.4 s) were obtained bilaterally in the cerebellum. Phonological decoding skill was measured using non-word reading. Handedness was assessed using both the Annett questionnaire of hand preference and Annett’s peg moving task. Cerebellar symmetry was observed in the dyslexics but there was significant asymmetry (right grey matter>left grey matter) in controls. The interpretation of these results depended whether a motor- or questionnaire-based method was used to determine handedness. The degree of cerebellar symmetry was correlated with the severity of dyslexics’ phonological decoding deficit. Those with more symmetric cerebella made more errors on a nonsense word reading measure of phonological decoding ability. Left cerebellar metabolite ratios were shown to correlate significantly with the degree of cerebellar asymmetry (P<0.05) in controls. This relationship was absent in developmental dyslexics. Cerebellar morphology reflects the higher degree of symmetry found previously in the temporal and parietal cortex of dyslexics. The relationship of cerebellar asymmetry to phonological decoding ability and handedness, together with our previous finding of altered metabolite ratios in the cerebellum of dyslexics, lead us to suggest that there are alterations in the neurological organisation of the cerebellum which relate to phonological decoding skills, in addition to motor skills and handedness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated order encoding in developmental dyslexia using a task that presented nonalphanumeric visual characters either simultaneously or sequentially—to tap spatial and temporal order encoding, respectively—and asked participants to reproduce their order. Dyslexic participants performed poorly in the sequential condition, but normally in the simultaneous condition, except for positions most susceptible to interference. These results are novel in demonstrating a selective difficulty with temporal order encoding in a dyslexic group. We also tested the associations between our order reconstruction tasks and: (a) lexical learning and phonological tasks; and (b) different reading and spelling tasks. Correlations were extensive when the whole group of participants was considered together. When dyslexics and controls were considered separately, different patterns of association emerged between orthographic tasks on the one side and tasks tapping order encoding, phonological processing, and written learning on the other. These results indicate that different skills support different aspects of orthographic processing and are impaired to different degrees in individuals with dyslexia. Therefore, developmental dyslexia is not caused by a single impairment, but by a family of deficits loosely related to difficulties with order. Understanding the contribution of these different deficits will be crucial to deepen our understanding of this disorder.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tests of postural stability have provided some evidence of a link between deficits in gross motor skills and developmental dyslexia. The ordinal-level scales used previously, however, have limited measurement sensitivity, and no studies have investigated motor performance during walking in participants with dyslexia. The purpose of this study was to investigate if continuous-scaled measures of standing balance and gait could discriminate between groups of impaired and normal readers when investigators were blind to group membership during testing. Children with dyslexia (n=22) and controls (n=18), aged 10-12 years, performed walking tests at four different speeds (slow-preferred-fast-very fast) on an even and an uneven surface, and tests of unperturbed and perturbed body sway during standing. Body movements were registered by a triaxial accelerometer over the lower trunk, and measures of reaction time, body sway, walking speed, step length and cadence were calculated. Results were controlled for gender differences. Tests of standing balance with eyes closed did not discriminate between groups. All unperturbed standing tests with eyes open showed significant group differences (P<0.05) and classified correctly 70-77.5% of the subjects into their respective groups. Mean walking speed during very fast walking on both flat and uneven surface was ≥0.2 m/s (P≤0.01) faster for controls than for the group with dyslexia. This test classified 77.5% and 85% of the subjects correctly on flat and uneven surface, respectively Cadence at preferred or very fast speed did not differ statistically between groups, but revealed significant group differences when all subjects were compared at a normalised walking speed (P≤0.04). Very fast walking speed as well as cadence at a normalised speed discriminated better between groups when subjects were walking on an uneven surface compared to a flat floor. Continuous-scaled walking tests performed in field settings may be suitable for motor skill assessment as a component of a screening tool for developmental dyslexia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Impaired postural control has been associated with poor reading skills, as well as with lower performance on measures of attention and motor control variables that frequently co-occur with reading difficulties. Measures of balance and motor control have been incorporated into several screening batteries for developmental dyslexia, but it is unclear whether the relationship between such skills and reading manifests as a behavioural continuum across the range of abilities or is restricted to groups of individuals with specific disorder phenotypes. Here were obtained measures of postural control alongside measures of reading, attention and general cognitive skills in a large sample of young adults (n = 100). Postural control was assessed using centre of pressure (CoP) measurements, obtained over 5 different task conditions. Our results indicate an absence of strong statistical relationships between balance measures with either reading, cognitive or attention measures across the sample as a whole. © 2014 Loras et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Six independent studies have identified linkage to chromosome 18 for developmental dyslexia or general reading ability. Until now, no candidate genes have been identified to explain this linkage. Here, we set out to identify the gene(s) conferring susceptibility by a two stage strategy of linkage and association analysis. Methodology/Principal Findings: Linkage analysis: 264 UK families and 155 US families each containing at least one child diagnosed with dyslexia were genotyped with a dense set of microsatellite markers on chromosome 18. Association analysis: Using a discovery sample of 187 UK families, nearly 3000 SNPs were genotyped across the chromosome 18 dyslexia susceptibility candidate region. Following association analysis, the top ranking SNPs were then genotyped in the remaining samples. The linkage analysis revealed a broad signal that spans approximately 40 Mb from 18p11.2 to 18q12.2. Following the association analysis and subsequent replication attempts, we observed consistent association with the same SNPs in three genes; melanocortin 5 receptor (MC5R), dymeclin (DYM) and neural precursor cell expressed, developmentally down-regulated 4-like (NEDD4L). Conclusions: Along with already published biological evidence, MC5R, DYM and NEDD4L make attractive candidates for dyslexia susceptibility genes. However, further replication and functional studies are still required.