3 resultados para Detailed mapping
em Aston University Research Archive
Resumo:
The Alborz Mountain range separates the northern part of Iran from the southern part. It also isolates a narrow coastal strip to the south of the Caspian Sea from the Central Iran plateau. Communication between the south and north until the 1950's was via two roads and one rail link. In 1963 work was completed on a major access road via the Haraz Valley (the most physically hostile area in the region). From the beginning the road was plagued by accidents resulting from unstable slopes on either side of the valley. Heavy casualties persuaded the government to undertake major engineering works to eliminate ''black spots" and make the road safe. However, despite substantial and prolonged expenditure the problems were not solved and casualties increased steadily due to the increase in traffic using the road. Another road was built to bypass the Haraz road and opened to traffic in 1983. But closure of the Haraz road was still impossible because of the growth of settlements along the route and the need for access to other installations such as the Lar Dam. The aim of this research was to explore the possibility of applying Landsat MSS imagery to locating black spots along the road and the instability problems. Landsat data had not previously been applied to highway engineering problems in the study area. Aerial photographs are better in general than satellite images for detailed mapping, but Landsat images are superior for reconnaissance and adequate for mapping at the 1 :250,000 scale. The broad overview and lack of distortion in the Landsat imagery make the images ideal for structural interpretation. The results of Landsat digital image analysis showed that certain rock types and structural features can be delineated and mapped. The most unstable areas comprising steep slopes, free of vegetation cover can be identified using image processing techniques. Structural lineaments revealed from the image analysis led to improved results (delineation of unstable features). Damavand Quaternary volcanics were found to be the dominant rock type along a 40 km stretch of the road. These rock types are inherently unstable and partly responsible for the difficulties along the road. For more detailed geological and morphological interpretation a sample of small subscenes was selected and analysed. A special developed image analysis package was designed at Aston for use on a non specialized computing system. Using this package a new and unique method for image classification was developed, allowing accurate delineation of the critical features of the study area.
Resumo:
The topography of the visual evoked magnetic response (VEMR) to a pattern onset stimulus was investigated using 4 check sizes and 3 contrast levels. The pattern onset response consists of three early components within the first 200ms, CIm, CIIm and CIIIm. The CIIm is usually of high amplitude and is very consistent in latency within a subject. Half field (HF) stimuli produce their strongest response over the contralateral hemisphere; the RHF stimulus exhibiting a lower positivity (outgoing field) and an upper negativity (ingoing field), rotated towards the midline. LHF stimulation produced the opposite response, a lower negative and an upper positive. Larger check sizes produce a single area of ingoing and outgoing field while smaller checks produce on area of ingoing and outgoing field over each hemisphere. Latency did not appear to vary with change in contrast but amplitudes increased with increasing contrast. A more detailed topographic study incorporating source localisation procedures suggested a source for CIIm - 4cm below the scalp, close to the midline with current flowing towards the lateral surface. Similar depth and position estimates but with opposite polarity were obtained for the pattern shift P100m previously. Hence, the P100m and the CIIm may originate in similar areas of visual cortex but reveal different aspects of visual processing. © 1992 Human Sciences Press, Inc.
Resumo:
Circulating low density lipoproteins (LDL) are thought to play a crucial role in the onset and development of atherosclerosis, though the detailed molecular mechanisms responsible for their biological effects remain controversial. The complexity of biomolecules (lipids, glycans and protein) and structural features (isoforms and chemical modifications) found in LDL particles hampers the complete understanding of the mechanism underlying its atherogenicity. For this reason the screening of LDL for features discriminative of a particular pathology in search of biomarkers is of high importance. Three major biomolecule classes (lipids, protein and glycans) in LDL particles were screened using mass spectrometry coupled to liquid chromatography. Dual-polarity screening resulted in good lipidome coverage, identifying over 300 lipid species from 12 lipid sub-classes. Multivariate analysis was used to investigate potential discriminators in the individual lipid sub-classes for different study groups (age, gender, pathology). Additionally, the high protein sequence coverage of ApoB-100 routinely achieved (≥70%) assisted in the search for protein modifications correlating to aging and pathology. The large size and complexity of the datasets required the use of chemometric methods (Partial Least Square-Discriminant Analysis, PLS-DA) for their analysis and for the identification of ions that discriminate between study groups. The peptide profile from enzymatically digested ApoB-100 can be correlated with the high structural complexity of lipids associated with ApoB-100 using exploratory data analysis. In addition, using targeted scanning modes, glycosylation sites within neutral and acidic sugar residues in ApoB-100 are also being explored. Together or individually, knowledge of the profiles and modifications of the major biomolecules in LDL particles will contribute towards an in-depth understanding, will help to map the structural features that contribute to the atherogenicity of LDL, and may allow identification of reliable, pathology-specific biomarkers. This research was supported by a Marie Curie Intra-European Fellowship within the 7th European Community Framework Program (IEF 255076). Work of A. Rudnitskaya was supported by Portuguese Science and Technology Foundation, through the European Social Fund (ESF) and "Programa Operacional Potencial Humano - POPH".