34 resultados para Design tool
em Aston University Research Archive
Resumo:
Glass reinforced plastic (GRP) is now an established material for the fabrication of sonar windows. Its good mechanical strength, light weight, resistance to corrosion and acoustic transparency, are all properties which fit it for this application. This thesis describes a study, undertaken at the Royal Naval Engineering College, Plymouth, into the mechanical behaviour of a circular cylindrical sonar panel. This particular type of panel would be used to cover a flank array sonar in a ship or submarine. The case considered is that of a panel with all of its edges mechanically clamped and subject to pressure loading on its convex surface. A comprehensive program of testing, to determine the orthotropic elastic properties of the laminated composite panel material is described, together with a series of pressure tests on 1:5 scale sonar panels. These pressure tests were carried out in a purpose designed test rig, using air pressure to provide simulated hydrostatic and hydrodynamic loading. Details of all instrumentation used in the experimental work are given in the thesis. The experimental results from the panel testing are compared with predictions of panel behaviour obtained from both the Galerkin solution of Flugge's cylindrical shell equations (orthotropic case), and finite element modelling of the panels using PAFEC. A variety of appropriate panel boundary conditions are considered in each case. A parametric study, intended to be of use as a preliminary design tool, and based on the above Galerkin solution, is also presented. This parametric study considers cases of boundary conditions, material properties, and panel geometry, outside of those investigated in the experimental work Final conclusions are drawn and recommendations made regarding possible improvements to the procedures for design, manufacture and fixing of sonar panels in the Royal Navy.
Resumo:
The selective aerobic oxidation of crotyl alcohol to crotonaldehyde was investigated by time-resolved synchronous DRIFTS/MS/XAS over silica and alumina supported Pd nanoparticles. Alcohol and oxygen reactant feeds were cycled through the catalyst bed while dynamic measurements of the palladium oxidation state, molecular adsorbates and evolved product distribution were made simultaneously on a sub-second timescale. Highly dispersed palladium nanoparticles remained in a partially oxidised state
Resumo:
PURPOSE: To design and validate a vision-specific quality-of-life assessment tool to be used in a clinical setting to evaluate low-vision rehabilitation strategy and management. METHODS: Previous vision-related questionnaires were assessed by low-vision rehabilitation professionals and patients for relevance and coverage. The 74 items selected were pretested to ensure correct interpretation. One hundred and fifty patients with low vision completed the chosen questions on four occasions to allow the selection of the most appropriate items. The vision-specific quality of life of patients with low vision was compared with that of 70 age-matched and gender-matched patients with normal vision and before and after low-vision rehabilitation in 278 patients. RESULTS: Items that were unreliable, internally inconsistent, redundant, or not relevant were excluded, resulting in the 25-item Low Vision Quality-of-Life Questionnaire (LVQOL). Completion of the LVQOL results in a summed score between 0 (a low quality of life) and 125 (a high quality of life). The LVQOL has a high internal consistency (α = 0.88) and good reliability (0.72). The average LVQOL score for a population with low vision (60.9 ± 25.1) was significantly lower than the average score of those with normal vision (100.3 ± 20.8). Rehabilitation improved the LVQOL score of those with low vision by an average of 6.8 ± 15.6 (17%). CONCLUSIONS: The LVQOL was shown to be an internally consistent, reliable, and fast method for measuring the vision-specific quality of life of the visually impaired in a clinical setting. It is able to quantify the quality of life of those with low vision and is useful in determining the effects of low-vision rehabilitation. Copyright (C) 2000 Elsevier Science Inc.
Resumo:
This paper describes a methodology: 'decision rules for analyzing manufacturing activities', which is designed to be a practical system of enquiry linking a strategic analysis to the design of production systems. The paper describes the development of the system, an industry specific design methodology, into DRAMA II which is a model that serves as an analytical tool for studying decision processes and implementation of production systems.
Resumo:
Research on production systems design has in recent years tended to concentrate on ‘software’ factors such as organisational aspects, work design, and the planning of the production operations. In contrast, relatively little attention has been paid to maximising the contributions made by fixed assets, particularly machines and equipment. However, as the cost of unproductive machine time has increased, reliability, particularly of machine tools, has become ever more important. Reliability theory and research has traditionally been based in the main on electrical and electronic equipment whereas mechanical devices, especially machine tools, have not received sufficiently objective treatment. A recently completed research project has considered the reliability of machine tools by taking sample surveys of purchasers, maintainers and manufacturers. Breakdown data were also collected from a number of engineering companies and analysed using both manual and computer techniques. Results obtained have provided an indication of those factors most likely to influence reliability and which in turn could lead to improved design and selection of machine tool systems. Statistical analysis of long-term field data has revealed patterns of trends of failure which could help in the design of more meaningful maintenance schemes.
Resumo:
Using current software engineering technology, the robustness required for safety critical software is not assurable. However, different approaches are possible which can help to assure software robustness to some extent. For achieving high reliability software, methods should be adopted which avoid introducing faults (fault avoidance); then testing should be carried out to identify any faults which persist (error removal). Finally, techniques should be used which allow any undetected faults to be tolerated (fault tolerance). The verification of correctness in system design specification and performance analysis of the model, are the basic issues in concurrent systems. In this context, modeling distributed concurrent software is one of the most important activities in the software life cycle, and communication analysis is a primary consideration to achieve reliability and safety. By and large fault avoidance requires human analysis which is error prone; by reducing human involvement in the tedious aspect of modelling and analysis of the software it is hoped that fewer faults will persist into its implementation in the real-time environment. The Occam language supports concurrent programming and is a language where interprocess interaction takes place by communications. This may lead to deadlock due to communication failure. Proper systematic methods must be adopted in the design of concurrent software for distributed computing systems if the communication structure is to be free of pathologies, such as deadlock. The objective of this thesis is to provide a design environment which ensures that processes are free from deadlock. A software tool was designed and used to facilitate the production of fault-tolerant software for distributed concurrent systems. Where Occam is used as a design language then state space methods, such as Petri-nets, can be used in analysis and simulation to determine the dynamic behaviour of the software, and to identify structures which may be prone to deadlock so that they may be eliminated from the design before the program is ever run. This design software tool consists of two parts. One takes an input program and translates it into a mathematical model (Petri-net), which is used for modeling and analysis of the concurrent software. The second part is the Petri-net simulator that takes the translated program as its input and starts simulation to generate the reachability tree. The tree identifies `deadlock potential' which the user can explore further. Finally, the software tool has been applied to a number of Occam programs. Two examples were taken to show how the tool works in the early design phase for fault prevention before the program is ever run.
Resumo:
The development of increasingly powerful computers, which has enabled the use of windowing software, has also opened the way for the computer study, via simulation, of very complex physical systems. In this study, the main issues related to the implementation of interactive simulations of complex systems are identified and discussed. Most existing simulators are closed in the sense that there is no access to the source code and, even if it were available, adaptation to interaction with other systems would require extensive code re-writing. This work aims to increase the flexibility of such software by developing a set of object-oriented simulation classes, which can be extended, by subclassing, at any level, i.e., at the problem domain, presentation or interaction levels. A strategy, which involves the use of an object-oriented framework, concurrent execution of several simulation modules, use of a networked windowing system and the re-use of existing software written in procedural languages, is proposed. A prototype tool which combines these techniques has been implemented and is presented. It allows the on-line definition of the configuration of the physical system and generates the appropriate graphical user interface. Simulation routines have been developed for the chemical recovery cycle of a paper pulp mill. The application, by creation of new classes, of the prototype to the interactive simulation of this physical system is described. Besides providing visual feedback, the resulting graphical user interface greatly simplifies the interaction with this set of simulation modules. This study shows that considerable benefits can be obtained by application of computer science concepts to the engineering domain, by helping domain experts to tailor interactive tools to suit their needs.
Resumo:
Cellular manufacturing is widely acknowledged as one of the key approaches to achieving world-class performance in batch manufacturing operations. The design of cellular manufacturing systems (CMS) is therefore crucial in determining a company's competitiveness. This thesis postulated that, in order to be effective the design of CMS should not only be systematic but also systemic. A systemic design uses the concepts of the body of work known as the 'systems approach' to ensure that a truly effective CMS is defined. The thesis examined the systems approach and created a systemic framework against which existing approaches to the design of CMS were evaluated. The most promising of these, Manufacturing Systems Engineering (MSE), was further investigated using a series of cross-sectional case-studies. Although, in practice, MSE proved to be less than systemic, it appeared to produce significant benefits. This seemed to suggest that CMS design did not need to be systemic to be effective. However, further longitudinal case-studies showed that the benefits claimed were at an operational level not at a business level and also that the performance of the whole system had not been evaluated. The deficiencies identified in the existing approaches to designing CMS were then addressed by the development of a novel CMS design methodology that fully utilised systems concepts. A key aspect of the methodology was the use of the Whole Business Simulator (WBS), a modelling and simulation tool that enabled the evaluation of CMS at operational and business levels. The most contentious aspects of the methodology were tested on a significant and complex case-study. The results of the exercise indicated that the systemic methodology was feasible.
Resumo:
Advances in both computer technology and the necessary mathematical models capable of capturing the geometry of arbitarily shaped objects has led to the development in this thesis of a surface generation package called 'IBSCURF' aimed at providing a more economically viable solution to free-form surface manufacture. A suit of computer programs written in FORTRAN 77 has been developed to provide computer aids for every aspect of work in designing and machining free-form surfaces. A vector-valued parametric method was used for shape description and a lofting technique employed for the construction of the surface. The development of the package 'IBSCURF' consists of two phases. The first deals with CAD. The design process commences in defining the cross-sections which are represented by uniform B-spline curves as approximations to give polygons. The order of the curve and the position and number of the polygon vertices can be used as parameters for the modification to achieve the required curves. When the definitions of the sectional curves is complete, the surface is interpolated over them by cubic cardinal splines. To use the CAD function of the package to design a mould for a plastic handle, a mathematical model was developed. To facilitate the integration of design and machining using the mathematical representation of the surface, the second phase of the package is concerned with CAM which enables the generation of tool offset positions for ball-nosed cutters and a general post-processor has been developed which automatically generates NC tape programs for any CNC milling machine. The two phases of these programs have been successfully implemented, as a CAD/CAM package for free-form surfaces on the VAX 11/750 super-minicomputer with graphics facilities for displaying drawings interactively on the terminal screen. The development of this package has been beneficial in all aspects of design and machining of free form surfaces.
Resumo:
The concept of an Expert System (ES) has been acknowledged as a very useful tool, but few studies have been carried out in its application to the design of cold rolled sections. This study involves primarily the use of an ES as a tool to improve the design process and to capture the draughtsman's knowledge. Its main purpose is to reduce substantially the time taken to produce a section drawing, thereby facilitating a speedy feedback to the customer. In order to communicate with a draughtsman, it is necessary to use sketches, symbolic representations and numerical data. This increases the complexity of programming an ES, as it is necessary to use a combination of languages so that decisions, calculations, graphical drawings and control of the system can be effected. A production system approach is used and a further step has been taken by introducing an Activator which is an autoexecute operation set up by the ES to operate an external program automatically. To speed up the absorption of new knowledge into the knowledge base, a new Learning System has been constructed. In addition to developing the ES, other software has been written to assist the design process. The section properties software has been introduced to improve the speed and consistency of calculating the section properties. A method of selecting or comparing the most appropriate section for a given specification is also implemented. Simple loading facilities have been introduced to guide the designer as to the loading capacity of the section. This research has concluded that the application of an ES is beneficial and with the activator approach, automated designing can be achieved. On average a complex drawing can be displayed on the screen in about 100 seconds, where over 95% of the initial section design time for repetitive or similar profile can be saved.
Resumo:
The main objective of the work presented in this thesis is to investigate the two sides of the flute, the face and the heel of a twist drill. The flute face was designed to yield straight diametral lips which could be extended to eliminate the chisel edge, and consequently a single cutting edge will be obtained. Since drill rigidity and space for chip conveyance have to be a compromise a theoretical expression is deduced which enables optimum chip disposal capacity to be described in terms of drill parameters. This expression is used to describe the flute heel side. Another main objective is to study the effect on drill performance of changing the conventional drill flute. Drills were manufactured according to the new flute design. Tests were run in order to compare the performance of a conventional flute drill and non conventional design put forward. The results showed that 50% reduction in thrust force and approximately 18% reduction in torque were attained for the new design. The flank wear was measured at the outer corner and found to be less for the new design drill than for the conventional one in the majority of cases. Hole quality, roundness, size and roughness were also considered as a further aspect of drill performance. Improvement in hole quality is shown to arise under certain cutting conditions. Accordingly it might be possible to use a hole which is produced in one pass of the new drill which previously would have required a drilled and reamed hole. A subsidiary objective is to design the form milling cutter that should be employed for milling the foregoing special flute from drill blank allowing for the interference effect. A mathematical analysis in conjunction with computing technique and computers is used. To control the grinding parameter, a prototype drill grinder was designed and built upon the framework of an existing cincinnati cutter grinder. The design and build of the new grinder is based on a computer aided drill point geometry analysis. In addition to the conical grinding concept, the new grinder is also used to produce spherical point utilizing a computer aided drill point geometry analysis.
Resumo:
Investigation of the different approaches used by Expert Systems researchers to solve problems in the domain of Mechanical Design and Expert Systems was carried out. The techniques used for conventional formal logic programming were compared with those used when applying Expert Systems concepts. A literature survey of design processes was also conducted with a view to adopting a suitable model of the design process. A model, comprising a variation on two established ones, was developed and applied to a problem within what are described as class 3 design tasks. The research explored the application of these concepts to Mechanical Engineering Design problems and their implementation on a microcomputer using an Expert System building tool. It was necessary to explore the use of Expert Systems in this manner so as to bridge the gap between their use as a control structure and for detailed analytical design. The former application is well researched into and this thesis discusses the latter. Some Expert System building tools available to the author at the beginning of his work were evaluated specifically for their suitability for Mechanical Engineering design problems. Microsynics was found to be the most suitable on which to implement a design problem because of its simple but powerful Semantic Net Knowledge Representation structure and the ability to use other types of representation schemes. Two major implementations were carried out. The first involved a design program for a Helical compression spring and the second a gearpair system design. Two concepts were proposed in the thesis for the modelling and implementation of design systems involving many equations. The method proposed enables equation manipulation and analysis using a combination of frames, semantic nets and production rules. The use of semantic nets for purposes other than for psychology and natural language interpretation, is quite new and represents one of the major contributions to knowledge by the author. The development of a purpose built shell program for this type of design problems was recommended as an extension of the research. Microsynics may usefully be used as a platform for this development.
Resumo:
This work is undertaken in the attempt to understand the processes at work at the cutting edge of the twist drill. Extensive drill life testing performed by the University has reinforced a survey of previously published information. This work demonstrated that there are two specific aspects of drilling which have not previously been explained comprehensively. The first concerns the interrelating of process data between differing drilling situations, There is no method currently available which allows the cutting geometry of drilling to be defined numerically so that such comparisons, where made, are purely subjective. Section one examines this problem by taking as an example a 4.5mm drill suitable for use with aluminium. This drill is examined using a prototype solid modelling program to explore how the required numerical information may be generated. The second aspect is the analysis of drill stiffness. What aspects of drill stiffness provide the very great difference in performance between short flute length, medium flute length and long flute length drills? These differences exist between drills of identical point geometry and the practical superiority of short drills has been known to shop floor drilling operatives since drilling was first introduced. This problem has been dismissed repeatedly as over complicated but section two provides a first approximation and shows that at least for smaller drills of 4. 5mm the effects are highly significant. Once the cutting action of the twist drill is defined geometrically there is a huge body of machinability data that becomes applicable to the drilling process. Work remains to interpret the very high inclination angles of the drill cutting process in terms of cutting forces and tool wear but aspects of drill design may already be looked at in new ways with the prospect of a more analytical approach rather than the present mix of experience and trial and error. Other problems are specific to the twist drill, such as the behaviour of the chips in the flute. It is now possible to predict the initial direction of chip flow leaving the drill cutting edge. For the future the parameters of further chip behaviour may also be explored within this geometric model.
Resumo:
Changes in modern structural design have created a demand for products which are light but possess high strength. The objective is a reduction in fuel consumption and weight of materials to satisfy both economic and environmental criteria. Cold roll forming has the potential to fulfil this requirement. The bending process is controlled by the shape of the profile machined on the periphery of the rolls. A CNC lathe can machine complicated profiles to a high standard of precision, but the expertise of a numerical control programmer is required. A computer program was developed during this project, using the expert system concept, to calculate tool paths and consequently to expedite the procurement of the machine control tapes whilst removing the need for a skilled programmer. Codifying the expertise of a human and the encapsulation of knowledge within a computer memory, destroys the dependency on highly trained people whose services can be costly, inconsistent and unreliable. A successful cold roll forming operation, where the product is geometrically correct and free from visual defects, is not easy to attain. The geometry of the sheet after travelling through the rolling mill depends on the residual strains generated by the elastic-plastic deformation. Accurate evaluation of the residual strains can provide the basis for predicting the geometry of the section. A study of geometric and material non-linearity, yield criteria, material hardening and stress-strain relationships was undertaken in this research project. The finite element method was chosen to provide a mathematical model of the bending process and, to ensure an efficient manipulation of the large stiffness matrices, the frontal solution was applied. A series of experimental investigations provided data to compare with corresponding values obtained from the theoretical modelling. A computer simulation, capable of predicting that a design will be satisfactory prior to the manufacture of the rolls, would allow effort to be concentrated into devising an optimum design where costs are minimised.