4 resultados para Design equations

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigation of the different approaches used by Expert Systems researchers to solve problems in the domain of Mechanical Design and Expert Systems was carried out. The techniques used for conventional formal logic programming were compared with those used when applying Expert Systems concepts. A literature survey of design processes was also conducted with a view to adopting a suitable model of the design process. A model, comprising a variation on two established ones, was developed and applied to a problem within what are described as class 3 design tasks. The research explored the application of these concepts to Mechanical Engineering Design problems and their implementation on a microcomputer using an Expert System building tool. It was necessary to explore the use of Expert Systems in this manner so as to bridge the gap between their use as a control structure and for detailed analytical design. The former application is well researched into and this thesis discusses the latter. Some Expert System building tools available to the author at the beginning of his work were evaluated specifically for their suitability for Mechanical Engineering design problems. Microsynics was found to be the most suitable on which to implement a design problem because of its simple but powerful Semantic Net Knowledge Representation structure and the ability to use other types of representation schemes. Two major implementations were carried out. The first involved a design program for a Helical compression spring and the second a gearpair system design. Two concepts were proposed in the thesis for the modelling and implementation of design systems involving many equations. The method proposed enables equation manipulation and analysis using a combination of frames, semantic nets and production rules. The use of semantic nets for purposes other than for psychology and natural language interpretation, is quite new and represents one of the major contributions to knowledge by the author. The development of a purpose built shell program for this type of design problems was recommended as an extension of the research. Microsynics may usefully be used as a platform for this development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the work presented in this thesis is to produce a direct method to design structures subject to deflection constraints at the working loads. The work carried out can be divided into four main parts. In the first part, a direct design procedure for plane steel frames subjected to sway limitations is proposed. The stiffness equations are modified so that the sway in each storey is equal to some specified values. The modified equations are then solved by iteration to calculate the cross-sectional properties of the columns as well as the other joint displacements. The beam sections are selected initially and then altered in an effort to reduce the total material cost of the frame. A linear extrapolation technique is used to reduce this cost. In this design, stability functions are used so that the effect of axial loads in the members are taken into consideration. The final reduced cost design is checked for strength requirements and the members are altered accordingly. In the second part, the design method is applied to the design of reinforced concrete frames in which the sway in the columns play an active part in the design criteria. The second moment of area of each column is obtained by solving the modified stiffness equations and then used to calculate the mlnlmum column depth required. Again the frame has to be checked for all the ultimate limit state load cases. In the third part, the method is generalised to design pin-jointed space frames for deflection limitatlions. In these the member areas are calculated so that the deflection at a specified joint is equal to its specified value. In the final part, the Lagrange multiplier technique is employed to obtain an optimum design for plane rigidly jointed steel frames. The iteration technique is used here to solve the modified stiffness equations as well as derivative equations obtained in accordance to the requirements of the optimisation method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the rate equations describing the operation of the Er3+, Pr3+ -codoped ZBLAN fiber lasers with different pump configurations, theoretical calculations that relate to the population characteristics and optimization of CW operation of high power Er3+, Pr3+ :ZBLAN double-clad fiber lasers are presented. Using the measured ET (energy-transfer), ETU (energy-transfer-upconversion) and CR (cross-relaxation) parameters relevant to Er3+, Pr3+ -codoped ZBLAN, a good agreement between the theoretical results from the model and recently reported experimental measurements is obtained. The effects on the slope efficiency of a number of laser parameters including fiber length, reflectance of the output mirror and pumping configuration are quantitatively analyzed and used for the design and optimization of high power Er3+, Pr3+ -codoped ZBLAN fiber lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the rate equations describing the operation of the Er3+, Pr3+ -codoped ZBLAN fiber lasers with different pump configurations, theoretical calculations that relate to the population characteristics and optimization of CW operation of high power Er3+, Pr3+ :ZBLAN double-clad fiber lasers are presented. Using the measured ET (energy-transfer), ETU (energy-transfer-upconversion) and CR (cross-relaxation) parameters relevant to Er3+, Pr3+ -codoped ZBLAN, a good agreement between the theoretical results from the model and recently reported experimental measurements is obtained. The effects on the slope efficiency of a number of laser parameters including fiber length, reflectance of the output mirror and pumping configuration are quantitatively analyzed and used for the design and optimization of high power Er3+, Pr3+ -codoped ZBLAN fiber lasers.