3 resultados para Design and education
em Aston University Research Archive
Resumo:
This study explores the ongoing pedagogical development of a number of undergraduate design and engineering programmes in the United Kingdom. Observations and data have been collected over several cohorts to bring a valuable perspective to the approaches piloted across two similar university departments while trialling a number of innovative learning strategies. In addition to the concurrent institutional studies the work explores curriculum design that applies the principles of Co-Design, multidisciplinary and trans disciplinary learning, with both engineering and product design students working alongside each other through a practical problem solving learning approach known as the CDIO learning initiative (Conceive, Design Implement and Operate) [1]. The study builds on previous work presented at the 2010 EPDE conference: The Effect of Personality on the Design Team: Lessons from Industry for Design Education [2]. The subsequent work presented in this paper applies the findings to mixed design and engineering team based learning, building on the insight gained through a number of industrial process case studies carried out in current design practice. Developments in delivery also aligning the CDIO principles of learning through doing into a practice based, collaborative learning experience and include elements of the TRIZ creative problem solving technique [3]. The paper will outline case studies involving a number of mixed engineering and design student projects that highlight the CDIO principles, combined with an external industrial design brief. It will compare and contrast the learning experience with that of a KTP derived student project, to examine an industry based model for student projects. In addition key areas of best practice will be presented, and student work from each mode will be discussed at the conference.
Resumo:
The primary goal of this research is to design and develop an education technology to support learning in global operations management. The research implements a series of studies to determine the right balance among user requirements, learning methods and applied technologies, on a view of student-centred learning. This research is multidisciplinary by nature, involving topics from various disciplines such as global operations management, curriculum and contemporary learning theory, and computer aided learning. Innovative learning models that emphasise on technological implementation are employed and discussed throughout this research.
Resumo:
Computerised production control developments have concentrated on Manufacturing Resources Planning (MRP II) systems. The literature suggests however, that despite the massive investment in hardware, software and management education, successful implementation of such systems in manufacturing industries has proved difficult. This thesis reviews the development of production planning and control systems, in particular, investigates the causes of failures in implementing MRP/MRP II systems in industrial environments and argues that the centralised and top-down planning structure, as well as the routine operational methodology of such systems, is inherently prone to failure. The thesis reviews the control benefits of cellular manufacturing systems but concludes that in more dynamic manufacturing environments, techniques such as Kanban are inappropriate. The basic shortcomings of MRP II systems are highlighted and a new enhanced operational methodology based on distributed planning and control principles is introduced. Distributed Manufacturing Resources Planning (DMRP), was developed as a capacity sensitive production planning and control solution for cellular manufacturing environments. The system utilises cell based, independently operated MRP II systems, integrated into a plant-wide control system through a Local Area Network. The potential benefits of adopting the system in industrial environments is discussed and the results of computer simulation experiments to compare the performance of the DMRP system against the conventional MRP II systems presented. DMRP methodology is shown to offer significant potential advantages which include ease of implementation, cost effectiveness, capacity sensitivity, shorter manufacturing lead times, lower working in progress levels and improved customer service.