14 resultados para Design Methodology
em Aston University Research Archive
Resumo:
Traditional machinery for manufacturing processes are characterised by actuators powered and co-ordinated by mechanical linkages driven from a central drive. Increasingly, these linkages are replaced by independent electrical drives, each performs a different task and follows a different motion profile, co-ordinated by computers. A design methodology for the servo control of high speed multi-axis machinery is proposed, based on the concept of a highly adaptable generic machine model. In addition to the dynamics of the drives and the loads, the model includes the inherent interactions between the motion axes and thus provides a Multi-Input Multi-Output (MIMO) description. In general, inherent interactions such as structural couplings between groups of motion axes are undesirable and needed to be compensated. On the other hand, imposed interactions such as the synchronisation of different groups of axes are often required. It is recognised that a suitable MIMO controller can simultaneously achieve these objectives and reconciles their potential conflicts. Both analytical and numerical methods for the design of MIMO controllers are investigated. At present, it is not possible to implement high order MIMO controllers for practical reasons. Based on simulations of the generic machine model under full MIMO control, however, it is possible to determine a suitable topology for a blockwise decentralised control scheme. The Block Relative Gain array (BRG) is used to compare the relative strength of closed loop interactions between sub-systems. A number of approaches to the design of the smaller decentralised MIMO controllers for these sub-systems has been investigated. For the purpose of illustration, a benchmark problem based on a 3 axes test rig has been carried through the design cycle to demonstrate the working of the design methodology.
Resumo:
This paper describes a methodology: 'decision rules for analyzing manufacturing activities', which is designed to be a practical system of enquiry linking a strategic analysis to the design of production systems. The paper describes the development of the system, an industry specific design methodology, into DRAMA II which is a model that serves as an analytical tool for studying decision processes and implementation of production systems.
Resumo:
Purpose – The international nuclear community continues to face the challenge of managing both the legacy waste and the new wastes that emerge from ongoing energy production. The UK is in the early stages of proposing a new convention for its nuclear industry, that is: waste minimisation through closely managing the radioactive source which creates the waste. This paper proposes a new technique (called waste and source material operability study (WASOP)) to qualitatively analyse a complex, waste-producing system to minimise avoidable waste and thus increase the protection to the public and the environment. Design/methodology/approach – WASOP critically considers the systemic impact of up and downstream facilities on the minimisation of nuclear waste in a facility. Based on the principles of HAZOP, the technique structures managers' thinking on the impact of mal-operations in interlinking facilities in order to identify preventative actions to reduce the impact on waste production of those mal-operations.' Findings – WASOP was tested with a small group of experienced nuclear regulators and was found to support their qualitative examination of waste minimisation and help them to work towards developing a plan of action. Originality/value – Given the newness of this convention, the wider methodology in which WASOP sits is still in development. However, this paper communicates the latest thinking from nuclear regulators on decision-making methodology for supporting waste minimisation and is hoped to form part of future regulatory guidance. WASOP is believed to have widespread potential application to the minimisation of many other forms of waste, including that from other energy sectors and household/general waste.
Resumo:
This system is concerned with the design and implementation of a community health information system which fulfils some of the local needs of fourteen nursing and para-medical professions in a district health authority, whilst satisfying the statutory requirements of the NHS Korner steering group for those professions. A national survey of community health computer applications, documented in the form of an applications register, shows the need for such a system. A series of general requirements for an informations systems design methodology are identified, together with specific requirements for this problem situation. A number of existing methodologies are reviewed, but none of these were appropriate for this application. Some existing approaches, tools and techniques are used to define a more suitable methodology. It is unreasonable to rely on one single general methodology for all types of application development. There is a need for pragmatism, adaptation and flexibility. In this research, participation in the development stages by those who will eventually use the system was thought desirable. This was achieved by forming a representative design group. Results would seem to show a highly favourable response from users to this participation which contributed to the overall success of the system implemented. A prototype was developed for the chiropody and school nursing staff groups of Darlington health authority, and evaluations show that a significant number of the problems and objectives of those groups have been successfully addressed; the value of community health information has been increased; and information has been successfully fed back to staff and better utilised.
Resumo:
Cellular manufacturing is widely acknowledged as one of the key approaches to achieving world-class performance in batch manufacturing operations. The design of cellular manufacturing systems (CMS) is therefore crucial in determining a company's competitiveness. This thesis postulated that, in order to be effective the design of CMS should not only be systematic but also systemic. A systemic design uses the concepts of the body of work known as the 'systems approach' to ensure that a truly effective CMS is defined. The thesis examined the systems approach and created a systemic framework against which existing approaches to the design of CMS were evaluated. The most promising of these, Manufacturing Systems Engineering (MSE), was further investigated using a series of cross-sectional case-studies. Although, in practice, MSE proved to be less than systemic, it appeared to produce significant benefits. This seemed to suggest that CMS design did not need to be systemic to be effective. However, further longitudinal case-studies showed that the benefits claimed were at an operational level not at a business level and also that the performance of the whole system had not been evaluated. The deficiencies identified in the existing approaches to designing CMS were then addressed by the development of a novel CMS design methodology that fully utilised systems concepts. A key aspect of the methodology was the use of the Whole Business Simulator (WBS), a modelling and simulation tool that enabled the evaluation of CMS at operational and business levels. The most contentious aspects of the methodology were tested on a significant and complex case-study. The results of the exercise indicated that the systemic methodology was feasible.
Resumo:
The recent explosive growth in advanced manufacturing technology (AMT) and continued development of sophisticated information technologies (IT) is expected to have a profound effect on the way we design and operate manufacturing businesses. Furthermore, the escalating capital requirements associated with these developments have significantly increased the level of risk associated with initial design, ongoing development and operation. This dissertation has examined the integration of two key sub-elements of the Computer Integrated Manufacturing (CIM) system, namely the manufacturing facility and the production control system. This research has concentrated on the interactions between production control (MRP) and an AMT based production facility. The disappointing performance of such systems has been discussed in the context of a number of potential technological and performance incompatibilities between these two elements. It was argued that the design and selection of operating policies for both is the key to successful integration. Furthermore, policy decisions are shown to play an important role in matching the performance of the total system to the demands of the marketplace. It is demonstrated that a holistic approach to policy design must be adopted if successful integration is to be achieved. It is shown that the complexity of the issues resulting from such an approach required the formulation of a structured design methodology. Such a methodology was subsequently developed and discussed. This combined a first principles approach to the behaviour of system elements with the specification of a detailed holistic model for use in the policy design environment. The methodology aimed to make full use of the `low inertia' characteristics of AMT, whilst adopting a JIT configuration of MRP and re-coupling the total system to the market demands. This dissertation discussed the application of the methodology to an industrial case study and the subsequent design of operational policies. Consequently a novel approach to production control resulted. A central feature of which was a move toward reduced manual intervention in the MRP processing and scheduling logic with increased human involvement and motivation in the management of work-flow on the shopfloor. Experimental results indicated that significant performance advantages would result from the adoption of the recommended policy set.
Resumo:
Product reliability and its environmental performance have become critical elements within a product's specification and design. To obtain a high level of confidence in the reliability of the design it is customary to test the design under realistic conditions in a laboratory. The objective of the work is to examine the feasibility of designing mechanical test rigs which exhibit prescribed dynamical characteristics. The design is then attached to the rig and excitation is applied to the rig, which then transmits representative vibration levels into the product. The philosophical considerations made at the outset of the project are discussed as they form the basis for the resulting design methodologies. It is attempted to directly identify the parameters of a test rig from the spatial model derived during the system identification process. It is shown to be impossible to identify a feasible test rig design using this technique. A finite dimensional optimal design methodology is developed which identifies the parameters of a discrete spring/mass system which is dynamically similar to a point coordinate on a continuous structure. This design methodology is incorporated within another procedure which derives a structure comprising a continuous element and a discrete system. This methodology is used to obtain point coordinate similarity for two planes of motion, which is validated by experimental tests. A limitation of this approach is that it is impossible to achieve multi-coordinate similarity due to an interaction of the discrete system and the continuous element at points away from the coordinate of interest. During the work the importance of the continuous element is highlighted and a design methodology is developed for continuous structures. The design methodology is based upon distributed parameter optimal design techniques and allows an initial poor design estimate to be moved in a feasible direction towards an acceptable design solution. Cumulative damage theory is used to provide a quantitative method of assessing the quality of dynamic similarity. It is shown that the combination of modal analysis techniques and cumulative damage theory provides a feasible design synthesis methodology for representative test rigs.
Resumo:
This paper is based a major research project run by a team from the Innovation, Design and Operations Management Research Unit at the Aston Business School under SERC funding. International Computers Limited (!CL), the UK's largest indigenous manufacturer of mainframe computer products, was the main industrial collaborator in the research. During the period 1985-89 an integrated production system termed the "Modular Assembly Cascade'' was introduced to the Company's mainframe assembly plant at Ashton-under-Lyne near Manchester. Using a methodology primarily based upon 'participative observation', the researchers developed a model for analysing this manufacturing system design called "DRAMA". Following a critique of the existing literature on Manufacturing Strategy, this paper will describe the basic DRAMA model and its development from an industry specific design methodology to DRAMA II, a generic model for studying organizational decision processes in the design and implementation of production systems. From this, the potential contribution of the DRAMA model to the existing knowledge on the process of manufacturing system design will be apparent.
Resumo:
Purpose – There appears to be an ever-insatiable demand from markets for organisations to improve their products and services. To meet this, there is a need to provide business process improvement (BPI) methodologies that are holistic, structured and procedural. Therefore, this paper describes research that has formed and tested a generic and practical methodology termed model-based and integrated process improvement (MIPI) to support the implementation of BPI; and to validate its effectiveness in organisations. This methodology has been created as an aid for practitioners within organisations. Design/methodology/approach – The research objectives were achieved by: reviewing and analysing current methodologies, and selecting a few frameworks against key performance indicators. Using a refined Delphi approach and semi-structured interview with the “experts” in the field. Intervention, case study and process research approach to evaluating a methodology. Findings – The BPI methodology was successfully formed and applied by the researcher and directly by the companies involved against the criteria of feasibility, usability and usefulness. Research limitations/implications – The paper has demonstrated a new knowledge on how to systematically assess a BPI methodology in practice. Practical implications – Model-based and integrated process improvement methodology (MIPI) methodology offers the practitioner (experienced and novice) a set of step-by-step aids necessary to make informed, consistent and efficient changes to business processes. Originality/value – The novelty of this research work is the creation of a holistic workbook-based methodology with relevant tools and techniques. It extends the capabilities of existing methodologies.
Resumo:
This paper describes a design methodology to achieve optimal performance for a short-stroke single-phase tubular permanent-magnet motor which drives a reciprocating vapor compressor. The steady-state characteristic of the direct-drive linear-motor compressor system is analyzed, an analytical formula for predicting iron loss is presented, and a motor-design procedure which takes into account the effect of compressor loads under nominal operating condition is formulated. It is shown that the motor efficiency can be optimized with respect to two leading dimensional ratios. Experimental results validate the proposed design methodology. Copyright © 2010 IEEE.
Resumo:
Purpose: The purpose of this paper is to examine the effect of the quality of senior management leadership on social support and job design, whose main effects on strains, and moderating effects on work stressors-to-strains relationships were assessed. Design/methodology/approach: A survey involving distribution of questionnaires was carried out on a random sample of health care employees in acute hospital practice in the UK. The sample comprised 65,142 respondents. The work stressors tested were quantitative overload and hostile environment, whereas strains were measured through job satisfaction and turnover intentions. Structural equation modelling and moderated regression analyses were used in the analysis. Findings: Quality of senior management leadership explained 75 per cent and 94 per cent of the variance of social support and job design respectively, whereas work stressors explained 51 per cent of the variance of strains. Social support and job design predicted job satisfaction and turnover intentions, as well as moderated significantly the relationships between quantitative workload/hostility and job satisfaction/turnover intentions. Research limitations/implications: The findings are useful to management and to health employees working in acute/specialist hospitals. Further research could be done in other counties to take into account cultural differences and variations in health systems. The limitations included self-reported data and percept-percept bias due to same source data collection. Practical implications: The quality of senior management leaders in hospitals has an impact on the social environment, the support given to health employees, their job design, as well as work stressors and strains perceived. Originality/value: The study argues in favour of effective senior management leadership of hospitals, as well as ensuring adequate support structures and job design. The findings may be useful to health policy makers and human resources managers. © Emerald Group Publishing Limited.
Resumo:
The high cost of batteries has led to investigations in using second-life ex-transportation batteries for grid support applications. Vehicle manufacturers currently all have different specifications for battery chemistry, arrangement of cells, capacity and voltage. With anticipated new developments in battery chemistry which could also affect these parameters, there are, as yet, no standards defining parameters in second life applications. To overcome issues relating to sizing and to prevent future obsolescence for the rest of the energy storage system, a cascaded topology with an operating envelope design approach has been used to connect together modules. This topology offers advantages in terms of system reliability. The design methodology is validated through a set of experimental results resulting in the creation of surface maps looking at the operation of the converter (efficiency and inductor ripple current). The use of a pre-defined module operating envelope also offers advantages for developing new operational strategies for systems with both hybrid battery energy systems and also hybrid systems including other energy sources such as solar power.