1 resultado para Demand aggregation
em Aston University Research Archive
Filtro por publicador
- Aberdeen University (2)
- Academic Research Repository at Institute of Developing Economies (7)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (7)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (7)
- Aston University Research Archive (1)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (24)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (49)
- Brock University, Canada (2)
- CentAUR: Central Archive University of Reading - UK (102)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (28)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (86)
- CUNY Academic Works (12)
- Dalarna University College Electronic Archive (6)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Commons - Michigan Tech (3)
- Digital Commons @ Winthrop University (2)
- Digital Howard @ Howard University | Howard University Research (1)
- Digital Peer Publishing (3)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (8)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (41)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (4)
- Institute of Public Health in Ireland, Ireland (2)
- Instituto Politécnico do Porto, Portugal (53)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (6)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (4)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (25)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório da Produção Científica e Intelectual da Unicamp (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (28)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (84)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (19)
- Scielo Saúde Pública - SP (35)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (5)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (22)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (5)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (32)
- Université de Montréal, Canada (18)
- University of Connecticut - USA (3)
- University of Queensland eSpace - Australia (13)
Resumo:
In order to generate sales promotion response predictions, marketing analysts estimate demand models using either disaggregated (consumer-level) or aggregated (store-level) scanner data. Comparison of predictions from these demand models is complicated by the fact that models may accommodate different forms of consumer heterogeneity depending on the level of data aggregation. This study shows via simulation that demand models with various heterogeneity specifications do not produce more accurate sales response predictions than a homogeneous demand model applied to store-level data, with one major exception: a random coefficients model designed to capture within-store heterogeneity using store-level data produced significantly more accurate sales response predictions (as well as better fit) compared to other model specifications. An empirical application to the paper towel product category adds additional insights. This article has supplementary material online.