53 resultados para Delivery of goods--Egypt--Oxyrhynchite Nome.

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodegradable poly(dl-lactide-co-glycolide) microspheres were prepared using a modified double emulsion solvent evaporation method for the delivery of the subunit tuberculosis vaccine (Ag85B-ESAT-6), a fusion protein of the immunodominant antigens 6-kDa early secretory antigenic target (ESAT-6) and antigen 85B (Ag85B). Addition of the cationic lipid dimethyl dioctadecylammonium bromide (DDA) and the immunostimulatory trehalose 6,6'-dibehenate (TDB), either separately or in combination, was investigated for the effect on particle size and distribution, antigen entrapment efficiency, in vitro release profiles and in vivo performance. Optimised formulation parameters yielded microspheres within the desired sub-10 mu m range (1.50 +/- 0.13 mu m), whilst exhibiting a high antigen entrapment efficiency (95 +/- 1.2%) and prolonged release profiles. Although the microsphere formulations induced a cell-mediated immune response and raised specific antibodies after immunisation, this was inferior to the levels achieved with liposomes composed of the same adjuvants (DDA-TDB), demonstrating that liposomes are more effective vaccine delivery systems compared with microspheres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liver fibrosis and its end-stage disease cirrhosis are a main cause of mortality and morbidity worldwide. Thus far, there is no efficient pharmaceutical intervention for the treatment of liver fibrosis. Liver fibrosis is characterized by excessive accumulation of the extracellular matrix (ECM) proteins. Transglutaminase (TG)-mediated covalent cross-linking has been implicated in the stabilization and accumulation of ECM in a number of fibrotic diseases. Thus, the use of tissue TG2 inhibitors has potential in the treatment of liver fibrosis. Recently, we introduced a novel group of site-directed irreversible specific inhibitors of TGs. Here, we describe the development of a liposome-based drug-delivery system for the site-specific delivery of these TG inhibitors into the liver. By using anionic or neutral-based DSPC liposomes, the TG inhibitor can be successfully incorporated into these liposomes and delivered specifically to the liver. Liposomes can therefore be used as a potential carrier system for site-specific delivery of the TG2 inhibitors into the liver, opening up a potential new avenue for the treatment of liver fibrosis and its end-stage disease cirrhosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Targeting of drugs and therapies locally to the esophagus is an important objective in the development of new and more effective dosage forms. Therapies that are retained within the oral cavity for both local and systemic action have been utilized for many years, although delivery to the esophagus has been far less reported. Esophageal disease states, including infections, motility disorders, gastric reflux, and cancers, would all benefit from localized drug delivery. Therefore, research in this area provides significant opportunities. The key limitation to effective drug delivery within the esophagus is sufficient retention at this site coupled with activity profiles to correspond with these retention times; therefore, a suitable formulation needs to provide the drug in a ready-to-work form at the site of action during the rapid transit through this organ. A successfully designed esophageal-targeted system can overcome these obstacles. This review presents a range of dosage form approaches for targeting the esophagus, including bioadhesive liquids and orally retained lozenges, chewing gums, gels, and films, as well as endoscopically delivered therapeutics. The techniques used to measure efficacy both in vitro and in vivo are also discussed. Drug delivery is a growing driver within the pharmaceutical industry and offers benefits both in terms of clinical efficacy, as well as in market positioning, as a means of extending a drug's exclusivity and profitability. Emerging systems that can be used to target the esophagus are reported within this review, as well as the potential of alternative formulations that offer benefits in this exciting area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigates the feasibility of using two types of carbomer (971 and 974) to prepare inhalable dry powders that exhibit modified drug release properties. Powders were prepared by spray-drying formulations containing salbutamol sulphate, 20-50% w/w carbomer as a drug release modifier and leucine as an aerosolization enhancer. Following physical characterization of the powders, the aerosolization and dissolution properties of the powders were investigated using a Multi-Stage Liquid Impinger and a modified USP II dissolution apparatus, respectively. All carbomer 974-modified powders and the 20% carbomer 971 powder demonstrated high dispersibility, with emitted doses of at least 80% and fine particle fractions of approximately 40%. The release data indicated that all carbomer-modified powders displayed a sustained release profile, with carbomer 971-modified powders obeying first order kinetics, whereas carbomer 974-modified powders obeyed the Higuchi root time kinetic model; increasing the amount of carbomer 971 in the formulation did not extend the duration of drug release, whereas this was observed for the carbomer 974-modified powders. These powders would be anticipated to deposit predominately in the lower regions of the lung following inhalation and then undergo delayed rather than instantaneous drug release, offering the potential to reduce dosing frequency and improve patient compliance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we describe the preparation of highly dispersible dry powders for pulmonary drug delivery that display sustained drug release characteristics. Powders were prepared by spray-drying 30% v/v aqueous ethanol formulations containing terbutaline sulfate as a model drug, chitosan as a drug release modifier and leucine as an aerosolisation enhancer. The influence of chitosan molecular weight on the drug release profile was investigated by using low, medium and high molecular weight chitosan or combinations thereof. Following spray-drying, resultant powders were characterised using scanning electron microscopy, laser diffraction, tapped density analysis, differential scanning calorimetry and thermogravitational analysis. The in vitro aerosolisation performance and drug release profile were investigated using Multi-Stage Liquid Impinger analysis and modified USP II dissolution apparatus, respectively. The powders generated were of a suitable aerodynamic size for inhalation, had low moisture content and were amorphous in nature. The powders were highly dispersible, with emitted doses of over 90% and fine particle fractions of up to 82% of the total loaded dose, and mass median aerodynamic diameters of less than 2.5microm. A sustained drug release profile was observed during dissolution testing; increasing the molecular weight of the chitosan in the formulation increased the duration of drug release. (c)2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to develop and characterize an intranasal delivery system for amantadine hydrochloride (AMT). Optimal formulations consisted of a thermosensitive polymer Pluronic® 127 and either carboxymethyl cellulose or chitosan which demonstrated gel transition at nasal cavity temperatures (34 ± 1°C). Rheologically, the loss tangent (Tan δ) confirmed a 3-stage gelation phenomena at 34 ± 1°C and non-Newtonian behavior. Storage of optimized formulation carboxymethyl cellulose and optimal formulation chitosan at 4°C for 8 weeks resulted in repeatable release profiles at 34°C when sampled, with a Fickian mechanism earlier on but moving toward anomalous transport by week 8. Polymers (Pluronic® 127, carboxymethyl cellulose, and chitosan) demonstrated no significant cellular toxicity to human nasal epithelial cells up to 4 mg/mL and up to 1 mM for AMT (IC50: 4.5 ± 0.05 mM). Optimized formulation carboxymethyl cellulose and optimal formulation chitosan demonstrated slower release across an in vitro human nasal airway model (43%-44% vs 79 ± 4.58% for AMT). Using a human nasal cast model, deposition into the olfactory regions (potential nose-to-brain) was demonstrated on nozzle insertion (5 mm), whereas tilting of the head forward (15°) resulted in greater deposition in the bulk of the nasal cavity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Topical application of ophthalmic drugs is very inefficient; contact lenses used as drug delivery devices could minimize the drug loss and side effects. Styrene-maleic acid copolymers (PSMA) can form polymer-phospholipid complexes with dipalmitoyl phosphatidylcholine (DMPC) in the form of nanometric vesicles, which can easily solubilise hydrophobic drugs. They can be dispersed on very thin contact lens coatings to immobilize the drug on their surface. Methods: Two types of complexes stable at different pH values (5 and 7 respectively) where synthesized and loaded with drugs of different hydrophilicities during their formation process. The drug release was studied in vitro and compared to the free drug. Results: The mean sizes of the complexes obtained by light scattering were 50 nm and 450 nm respectively with low polydispersities. However, they were affected by the drugs load and release. An increase was observed in the duration of the release in the case of hydrophobic drugs, from days to weeks, avoiding initial “burst” and with a lesser amount of total drug released due to the interaction of the drug with the phospholipid core. The size and charge of the different drugs and the complexes nature also affected the release profile. Conclusions: Polymer-phospholipid complexes in the form of nanoparticles can be used to solubilise and release hydrophobic drugs in a controlled way. The drug load and release can be optimised to reach therapeutic values in the eye.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this research was to formulate a novel biodegradable, biocompatible cationic microparticle vector for the delivery of DNA vaccines. The work builds upon previous research by Singh et al which described the adsorption of DNA to the surface of poly (D,L-lactide-co-glycolide) (PLG) microparticles stabilised with the surfactant cetyltrimethyl ammonium bromide (CT AB). This work demonstrated the induction of antibody and cellular immune responses to HIV proteins encoded on plasmid DNA adsorbed to the particle surface in mice, guinea pigs and non-human primates (Singh et aI, 2000; O'Hagan et aI, 2001). However, the use of surfactants in microparticle formulations for human vaccination is undesirable due to long term safety issues. Therefore, the present research aim was to develop an adsorbed DNA vaccine with enhanced potency and increased safety compared to CTAB stabilised PLG microparticles (PLG/CTAB) by replacement of the surfactant CTAB with an alternative cationic agent. The cationic polymers chitosan and poly (N- vinylpyrrolidone/2-dimethylaminoethyl methacrylate), dimethyl sulfate quaternary (PVP-PDAEMA) were investigated as alternative stabilisers to CTAB. From a variety of initial formulations, the most promising vector(s) for DNA vaccination were selected based on physicochemical data (chapter 3) and in vitro DNA loading and release characteristics (chapter 4). The chosen formulation(s) were analysed in greater depth (chapters 3 and 4), and gene expression was assessed by in vitro cell transfection studies using 293T kidney epithelial and C2C12 myoblast non-phagocytic cell lines (chapter 5). The cytotoxicity of the microparticles and their constituents were also evaluated in vitro (chapter 5). Stability and suitability of the formulation(s) for commercial production were assessed by cryopreparation and lyophilisation studies (chapters 3 and 4). Gene expression levels in cells of the immune response were evaluated by microparticle transfection of the dendritic cell (DC) line 2.4 and primary bone marrow derived DCs (chapter 6). In vivo, mice were injected i.m. with the formulations deemed most promising on the basis of in vitro studies and humoral and cellular immune responses were evaluated (chapter 6).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisense technology is a novel drug discovery method, which provides an essential tool for directly using gene sequence information to rationally design specific inhibitions of mRNA, to treat a wide range of diseases. The efficacy of naked oligodeoxynucleotides (ODNs) is relatively short lived due to rapid degradation in vivo. The entrapment of ODNs within biodegradable sustained-release delivery systems may improve ODN stability and reduce dose required for efficacy. Biodegradable polymer microspheres were evaluated as delivery devices for ODNs and ribozymes. Poly(lactide-co-glycolide) polymers were used due to their biocompatibility and non toxic degradation products. Microspheres were prepared using a double emulsion-deposition method and the formulations characterised. In vitro release profiles were characterised by an initial burst effect during the first 48 hours of release followed by a more sustained release. The release profiles were influenced by microsphere size, copolymer molecular weight, copolymer ratio, ODN loading, ODN length, and ODN chemistry. The serum stability of ODNs was significantly improved when entrapped within polymer microspheres. The cellular association of ODNs entrapped within small spheres (1-2μm) was improved by approximately 20-fold in A431 carcinoma cells compared with free ODNs. Fluorescence microscopy studies showed a more diffuse subcellular distribution when delivered as a microsphere formulation compared with free ODNs, which exhibited the characteristic punctate periplasmic distribution. For in vivo evaluation, polymer microspheres containing fluorescently-labelled ODNs were stereo-taxically administered to the neostriatum of the rat brain. Free ODN resulted in a punctate cellular distribution after 24 hours. In comparison ODN delivered using polymer microspheres were intensely visible in cells 48 hours post administration, and fluorescence appeared to be diffuse covering both cytosolic and nuclear regions. Whole-body autoradiography was also used to evaluate the biodistribution of free tritium labelled ODN and ODN entrapped microspheres, following subcutaneous administration to Balb-C mice. Polymer entrapped ODN gave a similar biodistribution to free ODN. Free ODN was distributed within 24 hours, whereas polymer released ODN was observed still presented in organs and at the site of administration seven days post administration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisense oligodeoxynucleotides can selectively inhibit gene expression provided they are delivered to their target site successfully for a sufficient duration. Biodegradable microspheres have previously been developed for the potential systemic delivery of antisense oligodeoxynucleotides and offer an excellent strategy for central administration of antisense oligodeoxynucleotides, providing a sustained-release delivery system. Biodegradable microspheres were formulated to entrap antisense oligodeoxynucleotides for stereotaxic implantation into site-specific regions of the rat brain.Release profiles of antisense oligodeoxynucleotides from biodegradable microspheres over 56 days that were triphasic were observed with high molecular weight polymers. Antisense oligodeoxynucleotides loaded into microspheres (1-10μm) had a five-fold increase in cellular association with glial and neuronal cells compared to the naked molecule, which was partially due to a greater cellular accumulation as observed by a slower efflux profile. In vivo distribution studies of antisense oligodeoxynucleotides demonstrated that the use of microspheres provided a sustained-release over more than 2 days compared to 12 hours of the naked molecule. Efficacy of antisense oligodeoxynucleotides was demonstrated during locomotor activity investigations, which significantly reduced cocaine-induced locomotor activity, where no efficacy was demonstrated with microspheres, possibly attributed to antisense loading and measurements being taken during a lag phase of antisense oligodeoxynucleotide release. Biodegradable microspheres can be delivered site-specifically into the brain and provide sustained-release of antisense oligodeoxynucleotides, offering the potential of in vivo efficacy in these reagents in the brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the fabrication of nanospheres from a range of novel polyhydroxyalkanoates supplied by Monsanto, St Louis, Missouri, USA for the delivery of selected actives of both pharmaceutical and agricultural interest. Initial evaluation of established microsphere and nanosphere fabrication techniques resulted in the adoption and optimisation of a double sonication solvent evaporation method involving the synperonic surfactant F68. Nanospheres could be consistently generated with this method. Studies on the incorporation and release of the surrogate protein Bovine Serum Albumin V demonstrated that BSA could be loaded with between 10-40% w/w BSA without nanosphere destabilisation. BSA release from nanospheres into Hanks Balanced Salts Solution, pH 7.4, could be monitored for up to 28 days at 37°C. The incorporation and release of the Monsanto actives - the insecticide Admire® ({ 1-[(6-chloro-3-pyridinyl)methyIJ-N-nitro-2-imidazolidinimine}) and the plant growth hormone potassium salt Gibberellic acid (GA3K) from physico-chemically characterised polymer nanospheres was monitored for up to 37 days and 28 days respectively, at both 4°C and 23°C. Release data was subsequently fitted to established kinetic models to elaborate the possible mechanisms of release of actives from the nanospheres. The exposure of unloaded nanospheres to a range of physiological media and rural rainwater has been used to investigate the role polymer biodegradation by enzymatic and chemical means might play in the in vivo release of actives and agricultural applications. The potential environmental biodegradation of Monsanto polymers has been investigated using a composting study (International Standard ISO/FDIS 14855) in which the ultimate aerobic biodegradation of the polymers has been monitored by the analysis of evolved carbon dioxide. These studies demonstrated the potential of the polymers for use in the environment, for example as a pesticide delivery system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this project, antigen-containing microspheres were produced using a range of biodegradable polymers by single and double emulsion solvent evaporation and spray drying techniques. The proteins used in this study were mainly BSA, tetanus toxoid, F1 and V, Y. pestis subunit vaccines and the cytokine, interferon-gamma. The polymer chosen for use in the vaccine preparation will directly determine the characteristics of the formulation. Full in vitro analysis of the preparations was carried out, including surface hydrophobicity and drug release profiles. The influence of the surfactants employed on microsphere surface hydrophobicity was demonstrated. Preparations produced with polyhydroxybutyrate and poly(DTH carbonate) polymers were also shown to be more hydrophobic than PLA microspheres, which may enhance particle uptake by antigen presenting cells and Peyer's patches. Systematic immunisation with microspheres with a range of properties showed differences in the time course and extent of the immune response generated, which would allow optimisation of the dosing schedule to provide maximal response in a single dose preparation. Both systematic and mucosal responses were induced following oral delivery of microencapsulated tetanus toxoid indicating that the encapsulation of the antigen into a microsphere preparation provides protection in the gut and allows targeting of the mucosal-associated lymphoid tissue. Co-encapsulation of adjuvants for further enhancement of immune response was also carried out and the effect on loading and release pattern assessed. Co-encapsulated F1 and interferon-gamma was administered i.p. and the immune responses compared with singly encapsulated and free subunit antigen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To systematically find and synthesise qualitative studies that elicited views and experiences of nurses involved in the delivery of health behaviour change (HBC) interventions in primary care, with a focus on how this can inform enhanced delivery and adherence to a structured approach for HBC interventions. Methods Systematic search of five electronic databases and additional strategies to maximise identification of studies, appraisal of studies and use of meta-synthesis to develop an inductive and interpretative form of knowledge synthesis. Results Nine studies met the inclusion criteria. Synthesis resulted in the development of four inter-linking themes; (a) actively engaging nurses in the process of delivering HBC interventions, (b) clarifying roles and responsibilities of those involved, (c) engaging practice colleagues, (d) communication of aims and potential outcomes of the intervention. Conclusion The synthesis of qualitative evidence resulted in the development of a conceptual framework that remained true to the findings of primary studies. This framework describes factors that should be actively promoted to enhance delivery of and adherence to HBC interventions by nurses working in primary care. Practice implications The findings can be used to inform strategies for researchers, policymakers and healthcare providers to enhance fidelity and support delivery of HBC interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hammerhead ribozymes are potent RNA molecules which have the potential to specifically inhibit gene expression by catalysing the trans-cleavage of mRNAs. However, they are unstable in biological fluids and cellular delivery poses a problem. Site-specific chemical modification of hammerhead ribozymes was evaluated as a means of enhancing biological stability. Chimeric, 2'-O-methylated ribozymes, containing only five unmodified ribonucleotides, were catalytically active in vitro (kcat = 1.46 min-1) and were significantly more stable in serum and lysosomal enzymes than unmodified (all-RNA) counterparts. Furthermore, they remained undegraded in cell-containing media for up to 8 hours. Stability enhancement allowed cellular uptake properties of radiolabelled ribozymes to be assessed following exogenous delivery. Studies in vulval and glial cell lines indicated that chimeric ribozymes became cell-associated via an inefficient process, which was energy and concentration dependant. A considerable proportion of ribozymes remained bound to cell-surface components, however, a small proportion (<1%) were internalised via mechanisms of adsorptive and / or receptor mediated endocytosis. Fluorescent microscopy indicated that ribozymes were localised within endosomal / lysosomal vesicles following cell entry. This was confirmed by immuno-electron microscopy, which allowed the detection of biotin-labelled ribozymes within the cell ultrastructure. Despite the predominant localisation within endocytic vesicles, a small proportion of internalised ribozymes appeared able to exit these compartments and penetrate target sites within the nucleus and cytoplasm. The ribozymes designed in this report were directed against the epidermal growth factor receptor mRNA, which is over-expressed in a malignant brain disease called glioblastoma multiforme. In order to examine the fate of ribozymes in the brain, the distribution of FITC-labelled ribozymes was examined following intra-cerebro ventricular injection to mice. FITC-ribozymes demonstrated high punctate pattern of distribution within the striatum and cortex, which appeared to represent localisation within cell bodies and dendritic processes. This suggested that delivery to glial cells in vivo may be possible. Finally, strategies were investigated to enhance the cellular delivery of ribozymes. Conjugation of ribozymes to anti~transferrin receptor antibodies improved cellular uptake 3-fold as a result of a specific interaction with transferrin receptors. Complexation with cationic liposomes also significantly improved cell association, however, some toxiclty was observed and this could be a limitation to their use. Overall, it would appear that hammerhead ribozymes can be chemically stabilised to allow direct exogenous administration in vivo. However, additional delivery strategies are probably required to improve cellular uptake, and thus, allow ribozymes to achieve their full potential as pharmaceutical agents. KEYWORDS: Catalytic

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we have established the efficient mucosal delivery of vaccines using absorption enhancers and chitosan. In addition, the use of chitosan was shown to enhance the action of other known adjuvants, such as CTB or Quil-A. Collectively, the results presented herein indicate that chitosan has excellent potential as a mucosal adjuvant. We have evaluated a number of absorption enhancers for their adjuvant activity in vivo. Polyornithine was shown to engender high scrum immune reasons to nasally delivered antigens, with higher molecular weight polyornithine facilitating the best results. We have demonstrated for the first time that vitamin E TPGS can act as mucosal adjuvant. Deoxycholic acid, cyclodextrins and acylcarnitines were also identified as effective mucosal adjuvants and showed enhanced immune responses to nasally delivered TT, DT and Yersinia pestis V and F1 antigens. Previously, none of these agents, common in their action as absorption enhancing agents, have been shown to have immunopotentiating activity for mucosal immunisation. We have successfully developed novel surface modified microspheres using chitosan as an emulsion stabiliser during the preparation of PLA microspheres. It was found that immune responses could be substantially increased, effectively exploiting the immunopenetrating characteristics of both chitosan and PLA microspheres in the same delivery vehicle. In the same study, comparison of intranasal and intramuscular routes of administration showed that with these formulations, the nasal route could be as effective as intramuscular delivery, highlighting the potential of mucosal administration for these particulate delivery systems. Chitosan was co-administered with polymer microspheres. It was demonstrated that this strategy facilitates markedly enhanced immune responses in both magnitude and duration following intramuscular administration. We conclude that this combination shows potential for single dose administration of vaccines. In another study, we have shown that the addition of chitosan to alum adsorbed TT was able to enhance immune responses. PLA micro/nanospheres were prepared and characterised with discreet particle size ranges. A smaller particle size was shown to facilitate higher scrum IgG responses following nasal administration. A lower antigen loading was additionally identified as being preferential for the induction of immune responses in combination with the smaller particle size. This may be due to the fact that the number of particles will be increased when antigen loading is low, which may in turn facilitate a more widespread uptake of particles. PLA lamellar particles were prepared and characterised. Adsorbed TT was evaluated for the potential to engender immune responses in vivo. These formulations were shown to generate effective immune responses following intramuscular administration. Positively charged polyethylcyanoacrylate and PLA nanoparticies were designed and characterised and their potential as delivery vehicles for DNA vaccines was investigated. Successful preparation of particles with narrow size distribution and positive surface charge (imparted by the inclusion of chitosan) was achieved. In the evaluation of antibody responses to DNA encoded antigen in the presence of alum administered intranasally, discrimination between the groups was only seen following intramuscular boosting with the corresponding protein. Our study showed that DNA vaccines in the presence of either alum or Quil-A may advantageously influence priming of the immune system by a mucosal route. The potential for the combination of adjuvants, Quil-A and chitosan, to enhance antibody responses to plasmid encoded antigen co-administered with the corresponding protein antigen was shown and this is worthy of further investigation. The findings here have identified novel adjuvants and approaches to vaccine delivery. In particular, chitosan or vitamin E TPGS are shown here to have considerable promise as non-toxic, safe mucosal adjuvants. In addition, biodegradable mucoadhesive delivery systems, surface modified with chitosan in a single step process, may have application for other uses such as drug and gene delivery.