11 resultados para Deformable templates

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformable models are an attractive approach to recognizing objects which have considerable within-class variability such as handwritten characters. However, there are severe search problems associated with fitting the models to data which could be reduced if a better starting point for the search were available. We show that by training a neural network to predict how a deformable model should be instantiated from an input image, such improved starting points can be obtained. This method has been implemented for a system that recognizes handwritten digits using deformable models, and the results show that the search time can be significantly reduced without compromising recognition performance. © 1997 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper argues the use of reusable simulation templates as a tool that can help to predict the effect of e-business introduction on business processes. First, a set of requirements for e-business modelling is introduced and modelling options described. Traditional business process mapping techniques are examined as a way of identifying potential changes. Whilst paper-based process mapping may not highlight significant differences between traditional and e-business processes, simulation does allow the real effects of e-business to be identified. Simulation has the advantage of capturing the dynamic characteristics of the process, thus reflecting more accurately the changes in behaviour. This paper shows the value of using generic process maps as a starting point for collecting the data that is needed to build the simulation and proposes the use of reusable templates/components for the speedier building of e-business simulation models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Edge blur is an important perceptual cue, but how does the visual system encode the degree of blur at edges? Blur could be measured by the width of the luminance gradient profile, peak ^ trough separation in the 2nd derivative profile, or the ratio of 1st-to-3rd derivative magnitudes. In template models, the system would store a set of templates of different sizes and find which one best fits the `signature' of the edge. The signature could be the luminance profile itself, or one of its spatial derivatives. I tested these possibilities in blur-matching experiments. In a 2AFC staircase procedure, observers adjusted the blur of Gaussian edges (30% contrast) to match the perceived blur of various non-Gaussian test edges. In experiment 1, test stimuli were mixtures of 2 Gaussian edges (eg 10 and 30 min of arc blur) at the same location, while in experiment 2, test stimuli were formed from a blurred edge sharpened to different extents by a compressive transformation. Predictions of the various models were tested against the blur-matching data, but only one model was strongly supported. This was the template model, in which the input signature is the 2nd derivative of the luminance profile, and the templates are applied to this signature at the zero-crossings. The templates are Gaussian derivative receptive fields that covary in width and length to form a self-similar set (ie same shape, different sizes). This naturally predicts that shorter edges should look sharper. As edge length gets shorter, responses of longer templates drop more than shorter ones, and so the response distribution shifts towards shorter (smaller) templates, signalling a sharper edge. The data confirmed this, including the scale-invariance implied by self-similarity, and a good fit was obtained from templates with a length-to-width ratio of about 1. The simultaneous analysis of edge blur and edge location may offer a new solution to the multiscale problem in edge detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous work has shown that human vision performs spatial integration of luminance contrast energy, where signals are squared and summed (with internal noise) over area at detection threshold. We tested that model here in an experiment using arrays of micro-pattern textures that varied in overall stimulus area and sparseness of their target elements, where the contrast of each element was normalised for sensitivity across the visual field. We found a power-law improvement in performance with stimulus area, and a decrease in sensitivity with sparseness. While the contrast integrator model performed well when target elements constituted 50–100% of the target area (replicating previous results), observers outperformed the model when texture elements were sparser than this. This result required the inclusion of further templates in our model, selective for grids of various regular texture densities. By assuming a MAX operation across these noisy mechanisms the model also accounted for the increase in the slope of the psychometric function that occurred as texture density decreased. Thus, for the first time, mechanisms that are selective for texture density have been revealed at contrast detection threshold. We suggest that these mechanisms have a role to play in the perception of visual textures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian ``ink generators'' spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the Expectation Maximization (EM) algorithm that maximizes the likelihood of the model generating the data. This approach has many advantages. (1) After identifying the model most likely to have generated the data, the system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style. (2) During the process of explaining the image, generative models can perform recognition driven segmentation. (3) The method involves a relatively small number of parameters and hence training is relatively easy and fast. (4) Unlike many other recognition schemes it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. We have demonstrated our method of fitting models to images does not get trapped in poor local minima. The main disadvantage of the method is it requires much more computation than more standard OCR techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have shown previously that a template model for edge perception successfully predicts perceived blur for a variety of edge profiles (Georgeson, 2001 Journal of Vision 1 438a; Barbieri-Hesse and Georgeson, 2002 Perception 31 Supplement, 54). This study concerns the perceived contrast of edges. Our model spatially differentiates the luminance profile, half-wave rectifies this first derivative, and then differentiates again to create the edge's 'signature'. The spatial scale of the signature is evaluated by filtering it with a set of Gaussian derivative operators. This process finds the correlation between the signature and each operator kernel at each position. These kernels therefore act as templates, and the position and scale of the best-fitting template indicate the position and blur of the edge. Our previous finding, that reducing edge contrast reduces perceived blur, can be explained by replacing the half-wave rectifier with a smooth, biased rectifier function (May and Georgeson, 2003 Perception 32 388; May and Georgeson, 2003 Perception 32 Supplement, 46). With the half-wave rectifier, the peak template response R to a Gaussian edge with contrast C and scale s is given by: R=Cp-1/4s-3/2. Hence, edge contrast can be estimated from response magnitude and blur: C=Rp1/4s3/2. Use of this equation with the modified rectifier predicts that perceived contrast will decrease with increasing blur, particularly at low contrasts. Contrast-matching experiments supported this prediction. In addition, the model correctly predicts the perceived contrast of Gaussian edges modified either by spatial truncation or by the addition of a ramp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the visual mechanisms that encode edge blur in images. Our previous work suggested that the visual system spatially differentiates the luminance profile twice to create the `signature' of the edge, and then evaluates the spatial scale of this signature profile by applying Gaussian derivative templates of different sizes. The scale of the best-fitting template indicates the blur of the edge. In blur-matching experiments, a staircase procedure was used to adjust the blur of a comparison edge (40% contrast, 0.3 s duration) until it appeared to match the blur of test edges at different contrasts (5% - 40%) and blurs (6 - 32 min of arc). Results showed that lower-contrast edges looked progressively sharper. We also added a linear luminance gradient to blurred test edges. When the added gradient was of opposite polarity to the edge gradient, it made the edge look progressively sharper. Both effects can be explained quantitatively by the action of a half-wave rectifying nonlinearity that sits between the first and second (linear) differentiating stages. This rectifier was introduced to account for a range of other effects on perceived blur (Barbieri-Hesse and Georgeson, 2002 Perception 31 Supplement, 54), but it readily predicts the influence of the negative ramp. The effect of contrast arises because the rectifier has a threshold: it not only suppresses negative values but also small positive values. At low contrasts, more of the gradient profile falls below threshold and its effective spatial scale shrinks in size, leading to perceived sharpening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the visual mechanisms that encode edge blur in images. Our previous work suggested that the visual system spatially differentiates the luminance profile twice to create the 'signature' of the edge, and then evaluates the spatial scale of this signature profile by applying Gaussian derivative templates of different sizes. The scale of the best-fitting template indicates the blur of the edge. In blur-matching experiments, a staircase procedure was used to adjust the blur of a comparison edge (40% contrast, 0.3 s duration) until it appeared to match the blur of test edges at different contrasts (5% - 40%) and blurs (6 - 32 min of arc). Results showed that lower-contrast edges looked progressively sharper.We also added a linear luminance gradient to blurred test edges. When the added gradient was of opposite polarity to the edge gradient, it made the edge look progressively sharper. Both effects can be explained quantitatively by the action of a half-wave rectifying nonlinearity that sits between the first and second (linear) differentiating stages. This rectifier was introduced to account for a range of other effects on perceived blur (Barbieri-Hesse and Georgeson, 2002 Perception 31 Supplement, 54), but it readily predicts the influence of the negative ramp. The effect of contrast arises because the rectifier has a threshold: it not only suppresses negative values but also small positive values. At low contrasts, more of the gradient profile falls below threshold and its effective spatial scale shrinks in size, leading to perceived sharpening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a template model for perception of edge blur and identify a crucial early nonlinearity in this process. The main principle is to spatially filter the edge image to produce a 'signature', and then find which of a set of templates best fits that signature. Psychophysical blur-matching data strongly support the use of a second-derivative signature, coupled to Gaussian first-derivative templates. The spatial scale of the best-fitting template signals the edge blur. This model predicts blur-matching data accurately for a wide variety of Gaussian and non-Gaussian edges, but it suffers a bias when edges of opposite sign come close together in sine-wave gratings and other periodic images. This anomaly suggests a second general principle: the region of an image that 'belongs' to a given edge should have a consistent sign or direction of luminance gradient. Segmentation of the gradient profile into regions of common sign is achieved by implementing the second-derivative 'signature' operator as two first-derivative operators separated by a half-wave rectifier. This multiscale system of nonlinear filters predicts perceived blur accurately for periodic and aperiodic waveforms. We also outline its extension to 2-D images and infer the 2-D shape of the receptive fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since molecularly imprinted polymers (MIPs) are designed to have a memory for their molecular templates it is easy to draw parallels with the affinity between biological receptors and their substrates. Could MIPs take the place of natural receptors in the selection of potential drug molecules from synthetic compound libraries? To answer that question this review discusses the results of MIP studies which attempt to emulate natural receptors. In addition the possible use of MIPs to guide a compound library synthesis towards a desired biological activity is highlighted. © 2005 Elsevier B.V. All rights reserved.