17 resultados para Deep Belief Network, Deep Learning, Gaze, Head Pose, Surveillance, Unsupervised Learning

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recommender system is a specific type of intelligent systems, which exploits historical user ratings on items and/or auxiliary information to make recommendations on items to the users. It plays a critical role in a wide range of online shopping, e-commercial services and social networking applications. Collaborative filtering (CF) is the most popular approaches used for recommender systems, but it suffers from complete cold start (CCS) problem where no rating record are available and incomplete cold start (ICS) problem where only a small number of rating records are available for some new items or users in the system. In this paper, we propose two recommendation models to solve the CCS and ICS problems for new items, which are based on a framework of tightly coupled CF approach and deep learning neural network. A specific deep neural network SADE is used to extract the content features of the items. The state of the art CF model, timeSVD++, which models and utilizes temporal dynamics of user preferences and item features, is modified to take the content features into prediction of ratings for cold start items. Extensive experiments on a large Netflix rating dataset of movies are performed, which show that our proposed recommendation models largely outperform the baseline models for rating prediction of cold start items. The two proposed recommendation models are also evaluated and compared on ICS items, and a flexible scheme of model retraining and switching is proposed to deal with the transition of items from cold start to non-cold start status. The experiment results on Netflix movie recommendation show the tight coupling of CF approach and deep learning neural network is feasible and very effective for cold start item recommendation. The design is general and can be applied to many other recommender systems for online shopping and social networking applications. The solution of cold start item problem can largely improve user experience and trust of recommender systems, and effectively promote cold start items.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recommender systems (RS) are used by many social networking applications and online e-commercial services. Collaborative filtering (CF) is one of the most popular approaches used for RS. However traditional CF approach suffers from sparsity and cold start problems. In this paper, we propose a hybrid recommendation model to address the cold start problem, which explores the item content features learned from a deep learning neural network and applies them to the timeSVD++ CF model. Extensive experiments are run on a large Netflix rating dataset for movies. Experiment results show that the proposed hybrid recommendation model provides a good prediction for cold start items, and performs better than four existing recommendation models for rating of non-cold start items.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There appears to be a missing dimension in OL literature to embrace the collective experience of emotion, both within groups and communities and also across the organization as a whole. The concept of OL efficacy- as a stimulus offering energy and direction for learning - remains unexplored. This research involved engaging with a company we have called ‘Electroco’ in depth to create a rich and nuanced representation of OL and members’ perceptions of OL over an extended time-frame (five years). We drew upon grounded theory research methodology (Locke, 2001), to elicit feedback from the organization, which was then used to inform future research plans and/ or refine emerging ideas. The concept of OL efficacy gradually emerged as a factor to be considered when exploring the relationship between individual learning and OL. . Bearing in mind Bandura’s (1982) conceptualization of self-efficacy (linked with mastery, modelling, verbal persuasion and emotional arousal), we developed a coding strategy encompassing these four factors as conceptualized at the organizational level. We added a fifth factor: ‘control of OL.’ We focused on feelings across the organization and the extent of consensus or otherwise around these five attributes. The construct has potential significance for how people are managed in many ways. Not only is OL efficacy is difficult for competitors to copy (arising as it does from the collective experience of working within a specific context); the self-efficacy concept suggests that success can be engineered with ‘small wins’ to reinforce mastery perceptions. Leaders can signal the importance of interaction with the external context, and encourage reflection on the strategies adopted by competitors or benchmark organizations (modelling). The theory also underlines the key role managers may play in persuading others about their organization’s propensity to learn (by focusing on success stories, for example). Research is set to continue within other sectors, including the high-performance financial service sector as well as the health-care technology sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As one of the most popular deep learning models, convolution neural network (CNN) has achieved huge success in image information extraction. Traditionally CNN is trained by supervised learning method with labeled data and used as a classifier by adding a classification layer in the end. Its capability of extracting image features is largely limited due to the difficulty of setting up a large training dataset. In this paper, we propose a new unsupervised learning CNN model, which uses a so-called convolutional sparse auto-encoder (CSAE) algorithm pre-Train the CNN. Instead of using labeled natural images for CNN training, the CSAE algorithm can be used to train the CNN with unlabeled artificial images, which enables easy expansion of training data and unsupervised learning. The CSAE algorithm is especially designed for extracting complex features from specific objects such as Chinese characters. After the features of articficial images are extracted by the CSAE algorithm, the learned parameters are used to initialize the first CNN convolutional layer, and then the CNN model is fine-Trained by scene image patches with a linear classifier. The new CNN model is applied to Chinese scene text detection and is evaluated with a multilingual image dataset, which labels Chinese, English and numerals texts separately. More than 10% detection precision gain is observed over two CNN models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background - The literature is not univocal about the effects of Peer Review (PR) within the context of constructivist learning. Due to the predominant focus on using PR as an assessment tool, rather than a constructivist learning activity, and because most studies implicitly assume that the benefits of PR are limited to the reviewee, little is known about the effects upon students who are required to review their peers. Much of the theoretical debate in the literature is focused on explaining how and why constructivist learning is beneficial. At the same time these discussions are marked by an underlying presupposition of a causal relationship between reviewing and deep learning. Objectives - The purpose of the study is to investigate whether the writing of PR feedback causes students to benefit in terms of: perceived utility about statistics, actual use of statistics, better understanding of statistical concepts and associated methods, changed attitudes towards market risks, and outcomes of decisions that were made. Methods - We conducted a randomized experiment, assigning students randomly to receive PR or non–PR treatments and used two cohorts with a different time span. The paper discusses the experimental design and all the software components that we used to support the learning process: Reproducible Computing technology which allows students to reproduce or re–use statistical results from peers, Collaborative PR, and an AI–enhanced Stock Market Engine. Results - The results establish that the writing of PR feedback messages causes students to experience benefits in terms of Behavior, Non–Rote Learning, and Attitudes, provided the sequence of PR activities are maintained for a period that is sufficiently long.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The World Wide Web provides plentiful contents for Web-based learning, but its hyperlink-based architecture connects Web resources for browsing freely rather than for effective learning. To support effective learning, an e-learning system should be able to discover and make use of the semantic communities and the emerging semantic relations in a dynamic complex network of learning resources. Previous graph-based community discovery approaches are limited in ability to discover semantic communities. This paper first suggests the Semantic Link Network (SLN), a loosely coupled semantic data model that can semantically link resources and derive out implicit semantic links according to a set of relational reasoning rules. By studying the intrinsic relationship between semantic communities and the semantic space of SLN, approaches to discovering reasoning-constraint, rule-constraint, and classification-constraint semantic communities are proposed. Further, the approaches, principles, and strategies for discovering emerging semantics in dynamic SLNs are studied. The basic laws of the semantic link network motion are revealed for the first time. An e-learning environment incorporating the proposed approaches, principles, and strategies to support effective discovery and learning is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ALBA 2002 Call for Papers asks the question ‘How do organizational learning and knowledge management contribute to organizational innovation and change?’. Intuitively, we would argue, the answer should be relatively straightforward as links between learning and change, and knowledge management and innovation, have long been commonly assumed to exist. On the basis of this assumption, theories of learning tend to focus ‘within organizations’, and assume a transfer of learning from individual to organization which in turn leads to change. However, empirically, we find these links are more difficult to articulate. Organizations exist in complex embedded economic, political, social and institutional systems, hence organizational change (or innovation) may be influenced by learning in this wider context. Based on our research in this wider interorganizational setting, we first make the case for the notion of network learning that we then explore to develop our appreciation of change in interorganizational networks, and how it may be facilitated. The paper begins with a brief review of lite rature on learning in the organizational and interorganizational context which locates our stance on organizational learning versus the learning organization, and social, distributed versus technical, centred views of organizational learning and knowledge. Developing from the view that organizational learning is “a normal, if problematic, process in every organization” (Easterby-Smith, 1997: 1109), we introduce the notion of network learning: learning by a group of organizations as a group. We argue this is also a normal, if problematic, process in organizational relationships (as distinct from interorganizational learning), which has particular implications for network change. Part two of the paper develops our analysis, drawing on empirical data from two studies of learning. The first study addresses the issue of learning to collaborate between industrial customers and suppliers, leading to the case for network learning. The second, larger scale study goes on to develop this theme, examining learning around several major change issues in a healthcare service provider network. The learning processes and outcomes around the introduction of a particularly controversial and expensive technology are described, providing a rich and contrasting case with the first study. In part three, we then discuss the implications of this work for change, and for facilitating change. Conclusions from the first study identify potential interventions designed to facilitate individual and organizational learning within the customer organization to develop individual and organizational ‘capacity to collaborate’. Translated to the network example, we observe that network change entails learning at all levels – network, organization, group and individual. However, presenting findings in terms of interventions is less meaningful in an interorganizational network setting given: the differences in authority structures; the less formalised nature of the network setting; and the importance of evaluating performance at the network rather than organizational level. Academics challenge both the idea of managing change and of managing networks. Nevertheless practitioners are faced with the issue of understanding and in fluencing change in the network setting. Thus we conclude that a network learning perspective is an important development in our understanding of organizational learning, capability and change, locating this in the wider context in which organizations are embedded. This in turn helps to develop our appreciation of facilitating change in interorganizational networks, both in terms of change issues (such as introducing a new technology), and change orientation and capability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this thesis is the extension of topographic visualisation mappings to allow for the incorporation of uncertainty. Few visualisation algorithms in the literature are capable of mapping uncertain data with fewer able to represent observation uncertainties in visualisations. As such, modifications are made to NeuroScale, Locally Linear Embedding, Isomap and Laplacian Eigenmaps to incorporate uncertainty in the observation and visualisation spaces. The proposed mappings are then called Normally-distributed NeuroScale (N-NS), T-distributed NeuroScale (T-NS), Probabilistic LLE (PLLE), Probabilistic Isomap (PIso) and Probabilistic Weighted Neighbourhood Mapping (PWNM). These algorithms generate a probabilistic visualisation space with each latent visualised point transformed to a multivariate Gaussian or T-distribution, using a feed-forward RBF network. Two types of uncertainty are then characterised dependent on the data and mapping procedure. Data dependent uncertainty is the inherent observation uncertainty. Whereas, mapping uncertainty is defined by the Fisher Information of a visualised distribution. This indicates how well the data has been interpolated, offering a level of ‘surprise’ for each observation. These new probabilistic mappings are tested on three datasets of vectorial observations and three datasets of real world time series observations for anomaly detection. In order to visualise the time series data, a method for analysing observed signals and noise distributions, Residual Modelling, is introduced. The performance of the new algorithms on the tested datasets is compared qualitatively with the latent space generated by the Gaussian Process Latent Variable Model (GPLVM). A quantitative comparison using existing evaluation measures from the literature allows performance of each mapping function to be compared. Finally, the mapping uncertainty measure is combined with NeuroScale to build a deep learning classifier, the Cascading RBF. This new structure is tested on the MNist dataset achieving world record performance whilst avoiding the flaws seen in other Deep Learning Machines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We are concerned with the problem of image segmentation in which each pixel is assigned to one of a predefined finite number of classes. In Bayesian image analysis, this requires fusing together local predictions for the class labels with a prior model of segmentations. Markov Random Fields (MRFs) have been used to incorporate some of this prior knowledge, but this not entirely satisfactory as inference in MRFs is NP-hard. The multiscale quadtree model of Bouman and Shapiro (1994) is an attractive alternative, as this is a tree-structured belief network in which inference can be carried out in linear time (Pearl 1988). It is an hierarchical model where the bottom-level nodes are pixels, and higher levels correspond to downsampled versions of the image. The conditional-probability tables (CPTs) in the belief network encode the knowledge of how the levels interact. In this paper we discuss two methods of learning the CPTs given training data, using (a) maximum likelihood and the EM algorithm and (b) emphconditional maximum likelihood (CML). Segmentations obtained using networks trained by CML show a statistically-significant improvement in performance on synthetic images. We also demonstrate the methods on a real-world outdoor-scene segmentation task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction-The design of the UK MPharm curriculum is driven by the Royal Pharmaceutical Society of Great Britain (RPSGB) accreditation process and the EU directive (85/432/EEC).[1] Although the RPSGB is informed about teaching activity in UK Schools of Pharmacy (SOPs), there is no database which aggregates information to provide the whole picture of pharmacy education within the UK. The aim of the teaching, learning and assessment study [2] was to document and map current programmes in the 16 established SOPs. Recent developments in programme delivery have resulted in a focus on deep learning (for example, through problem based learning approaches) and on being more student centred and less didactic through lectures. The specific objectives of this part of the study were (a) to quantify the content and modes of delivery of material as described in course documentation and (b) having categorised the range of teaching methods, ask students to rate how important they perceived each one for their own learning (using a three point Likert scale: very important, fairly important or not important). Material and methods-The study design compared three datasets: (1) quantitative course document review, (2) qualitative staff interview and (3) quantitative student self completion survey. All 16 SOPs provided a set of their undergraduate course documentation for the year 2003/4. The documentation variables were entered into Excel tables. A self-completion questionnaire was administered to all year four undergraduates, using a pragmatic mixture of methods, (n=1847) in 15 SOPs within Great Britain. The survey data were analysed (n=741) using SPSS, excluding non-UK students who may have undertaken part of their studies within a non-UK university. Results and discussion-Interviews showed that individual teachers and course module leaders determine the choice of teaching methods used. Content review of the documentary evidence showed that 51% of the taught element of the course was delivered using lectures, 31% using practicals (includes computer aided learning) and 18% small group or interactive teaching. There was high uniformity across the schools for the first three years; variation in the final year was due to the project. The average number of hours per year across 15 schools (data for one school were not available) was: year 1: 408 hours; year 2: 401 hours; year 3: 387 hours; year 4: 401 hours. The survey showed that students perceived lectures to be the most important method of teaching after dispensing or clinical practicals. Taking the very important rating only: 94% (n=694) dispensing or clinical practicals; 75% (n=558) lectures; 52% (n=386) workshops, 50% (n=369) tutorials, 43% (n=318) directed study. Scientific laboratory practices were rated very important by only 31% (n=227). The study shows that teaching of pharmacy to undergraduates in the UK is still essentially didactic through a high proportion of formal lectures and with high levels of staff-student contact. Schools consider lectures still to be the most cost effective means of delivering the core syllabus to large cohorts of students. However, this does limit the scope for any optionality within teaching, the scope for small group work is reduced as is the opportunity to develop multi-professional learning or practice placements. Although novel teaching and learning techniques such as e-learning have expanded considerably over the past decade, schools of pharmacy have concentrated on lectures as the best way of coping with the huge expansion in student numbers. References [1] Council Directive. Concerning the coordination of provisions laid down by law, regulation or administrative action in respect of certain activities in the field of pharmacy. Official Journal of the European Communities 1985;85/432/EEC. [2] Wilson K, Jesson J, Langley C, Clarke L, Hatfield K. MPharm Programmes: Where are we now? Report commissioned by the Pharmacy Practice Research Trust., 2005.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is a study of the generation of topographic mappings - dimension reducing transformations of data that preserve some element of geometric structure - with feed-forward neural networks. As an alternative to established methods, a transformational variant of Sammon's method is proposed, where the projection is effected by a radial basis function neural network. This approach is related to the statistical field of multidimensional scaling, and from that the concept of a 'subjective metric' is defined, which permits the exploitation of additional prior knowledge concerning the data in the mapping process. This then enables the generation of more appropriate feature spaces for the purposes of enhanced visualisation or subsequent classification. A comparison with established methods for feature extraction is given for data taken from the 1992 Research Assessment Exercise for higher educational institutions in the United Kingdom. This is a difficult high-dimensional dataset, and illustrates well the benefit of the new topographic technique. A generalisation of the proposed model is considered for implementation of the classical multidimensional scaling (¸mds}) routine. This is related to Oja's principal subspace neural network, whose learning rule is shown to descend the error surface of the proposed ¸mds model. Some of the technical issues concerning the design and training of topographic neural networks are investigated. It is shown that neural network models can be less sensitive to entrapment in the sub-optimal global minima that badly affect the standard Sammon algorithm, and tend to exhibit good generalisation as a result of implicit weight decay in the training process. It is further argued that for ideal structure retention, the network transformation should be perfectly smooth for all inter-data directions in input space. Finally, there is a critique of optimisation techniques for topographic mappings, and a new training algorithm is proposed. A convergence proof is given, and the method is shown to produce lower-error mappings more rapidly than previous algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein structure prediction is a cornerstone of bioinformatics research. Membrane proteins require their own prediction methods due to their intrinsically different composition. A variety of tools exist for topology prediction of membrane proteins, many of them available on the Internet. The server described in this paper, BPROMPT (Bayesian PRediction Of Membrane Protein Topology), uses a Bayesian Belief Network to combine the results of other prediction methods, providing a more accurate consensus prediction. Topology predictions with accuracies of 70% for prokaryotes and 53% for eukaryotes were achieved. BPROMPT can be accessed at http://www.jenner.ac.uk/BPROMPT.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Deep brain stimulation has shown remarkable potential in alleviating otherwise treatment-resistant chronic pain, but little is currently known about the underlying neural mechanisms. Here for the first time, we used noninvasive neuroimaging by magnetoencephalography to map changes in neural activity induced by deep brain stimulation in a patient with severe phantom limb pain. When the stimulator was turned off, the patient reported significant increases in subjective pain. Corresponding significant changes in neural activity were found in a network including the mid-anterior orbitofrontal and subgenual cingulate cortices; these areas are known to be involved in pain relief. Hence, they could potentially serve as future surgical targets to relieve chronic pain. © 2007 Lippincott Williams & Wilkins, Inc.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Purpose – This paper aims to focus on developing critical understanding in human resource management (HRM) students in Aston Business School, UK. The paper reveals that innovative teaching methods encourage deep approaches to study, an indicator of students reaching their own understanding of material and ideas. This improves student employability and satisfies employer need. Design/methodology/approach – Student response to two second year business modules, matched for high student approval rating, was collected through focus group discussion. One module was taught using EBL and the story method, whilst the other used traditional teaching methods. Transcripts were analysed and compared using the structure of the ASSIST measure. Findings – Critical understanding and transformative learning can be developed through the innovative teaching methods of enquiry-based learning (EBL) and the story method. Research limitations/implications – The limitation is that this is a single case study comparing and contrasting two business modules. The implication is that the study should be replicated and developed in different learning settings, so that there are multiple data sets to confirm the research finding. Practical implications – Future curriculum development, especially in terms of HE, still needs to encourage students and lecturers to understand more about the nature of knowledge and how to learn. The application of EBL and the story method is described in a module case study – “Strategy for Future Leaders”. Originality/value – This is a systematic and comparative study to improve understanding of how students and lecturers learn and of the context in which the learning takes place.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The entorhinal cortex (EC) controls hippocampal input and output, playing major roles in memory and spatial navigation. Different layers of the EC subserve different functions and a number of studies have compared properties of neurones across layers. We have studied synaptic inhibition and excitation in EC neurones, and we have previously compared spontaneous synaptic release of glutamate and GABA using patch clamp recordings of synaptic currents in principal neurones of layers II (L2) and V (L5). Here, we add comparative studies in layer III (L3). Such studies essentially look at neuronal activity from a presynaptic viewpoint. To correlate this with the postsynaptic consequences of spontaneous transmitter release, we have determined global postsynaptic conductances mediated by the two transmitters, using a method to estimate conductances from membrane potential fluctuations. We have previously presented some of this data for L3 and now extend to L2 and L5. Inhibition dominates excitation in all layers but the ratio follows a clear rank order (highest to lowest) of L2>L3>L5. The variance of the background conductances was markedly higher for excitation and inhibition in L2 compared to L3 or L5. We also show that induction of synchronized network epileptiform activity by blockade of GABA inhibition reveals a relative reluctance of L2 to participate in such activity. This was associated with maintenance of a dominant background inhibition in L2, whereas in L3 and L5 the absolute level of inhibition fell below that of excitation, coincident with the appearance of synchronized discharges. Further experiments identified potential roles for competition for bicuculline by ambient GABA at the GABAA receptor, and strychnine-sensitive glycine receptors in residual inhibition in L2. We discuss our results in terms of control of excitability in neuronal subpopulations of EC neurones and what these may suggest for their functional roles. © 2014 Greenhill et al.