17 resultados para Decontamination by plasma

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To determine the effect of periodontitis patients' plasma on the neutrophil oxidative burst and the role of albumin, immunoglobulins (Igs) and cytokines. Materials and Methods: Plasma was collected from chronic periodontitis patients (n=11) and periodontally healthy controls (n=11) and used with/without depletion of albumin and Ig or antibody neutralization of IL-8, GM-CSF or IFN-a to prime/stimulate peripheral blood neutrophils, isolated from healthy volunteers. The respiratory burst was measured by lucigenin-dependent chemiluminescence. Plasma cytokine levels were determined by ELISA. Results: Plasmas from patients were significantly more effective in both directly stimulating neutrophil superoxide production and priming for subsequent formyl-met-leu-phe (fMLP)-stimulated superoxide production than plasmas from healthy controls (p<0.05). This difference was maintained after depletion of albumin and Ig. Plasma from patients contained higher mean levels of IL-8, GM-CSF and IFN-a. Individual neutralizing antibodies against IL-8, GM-CSF or IFN-a inhibited the direct stimulatory effect of patients' plasma, whereas the ability to prime for fMLP-stimulated superoxide production was only inhibited by neutralization of IFN-a. The stimulating and priming effects of control plasma were unaffected by antibody neutralization. Conclusions: This study demonstrates that plasma cytokines may have a role in inducing the hyperactive (IL-8, GM-CSF, IFN-a) and hyper-reactive (IFN-a) neutrophil phenotype seen in periodontitis patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surfaces of bulk carbon nanotubes compacted by plasma spark sintering have been modified with polytetrofluorethylene, thereby producing a super-hydrophobic surface with a contact angle above 160°. The surface roughness and air trapped in pores and between the polytetrofluorethylene particles are responsible for the super-hydrophobility. The material can be machined into desired shapes with fine and complex channels, allowing internal surfaces to also be super-hydrophobic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vascular monocyte retention in the subintima is pivotal to the development of cardiovascular disease and is facilitated by up-regulation of adhesion molecules on monocytes/endothelial cells during oxidative stress. Epidemiological studies have shown that cardiovascular disease risk is inversely proportional to plasma levels of the dietary micronutrients, vitamin C and vitamin E (α-tocopherol). We have tested the hypothesis that α-tocopherol supplementation may alter endothelial/monocyte function and interaction in subjects with normal ascorbate levels (> 50 μM), as ascorbate has been shown to regenerate tocopherol from its oxidised tocopheroxyl radical form in vitro. Healthy male subjects received α-tocopherol supplements (400 IU RRR-α-tocopherol /day for 6 weeks) in a placebo-controlled, double-blind intervention study. There were no significant differences in monocyte CD11b expression, monocyte adhesion to endothelial cells, plasma C-reactive protein or sICAM- 1 concentrations post-supplementation. There was no evidence for nuclear translocation of NF-κB in isolated resting monocytes, nor any effect of α-tocopherol supplementation. However, post-supplementation, sVCAM-1 levels were decreased in all subjects and sE-selectin levels were increased in the vitamin C-replete group only; a weak positive correlation was observed between sE-selectin and α-tocopherol concentration. In conclusion, α-tocopherol supplementation had little effect on cardiovascular disease risk factors in healthy subjects and the effects of tocopherol were not consistently affected by plasma vitamin C concentration. © W. S. Maney & Son Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is some evidence to suggest that nitriding of alloy steels, in particular high speed tool steels, under carefully controlled conditions might sharply increase rolling contact fatigue resistance. However, the subsurface shear stresses developed in aerospace bearing applications tend to occur at depths greater than the usual case depths currently produced by nitriding. Additionally, case development must be limited with certain materials due to case spalling and may not always be sufficient to achieve the current theoretical depths necessary to ensure that peak stresses occur within the case. It was the aim of' this work to establish suitable to overcome this problem by plasma nitriding. To assist this development a study has been made of prior hardening treatment, case development, residual stress and case cracking tendency. M2 in the underhardened, undertempered and fully hardened and tempered conditions all responded similarly to plasma nitriding - maximum surface hardening being achieved by plasma nitriding at 450°C. Case development varied linearly with increasing treatment temperature and also with the square root of the treatment time. Maximum surface hardness of M5O and Tl steels was achieved by plasma nitriding in 15% nitrogen/85% hydrogen and varied logarithmically with atmosphere nitrogen content. The case-cracking contact stress varied linearly with nitriding temperature for M2. Tl and M5O supported higher stresses after nitriding in low nitrogen plasma atmospheres. Unidirectional bending fatigue of M2 has been improved up to three times the strength of the fully hardened and tempered condition by plasma nitriding for 16hrs at 400°C. Fatigue strengths of Tl and M5O have been improved by up to 30% by plasma nitriding for 16hrs at 450°C in a 75% hydrogen/25% nitrogen atmosphere.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) is the leading cause of death in Europe responsible for more than 4.3 million deaths annually. The World Health Organisation funded the Monica project (1980s-1990s) which monitored ten million subjects aged 22-6Syrs, and demonstrated that coronary heart disease (CHD) mortality declined over 10 years, was due in two thirds of cases to reduced incidence of CHD (reduced risk behaviours e.g. poor diet and smoking) and one third by improved treatments. Epidemiological evidence suggests diets rich in antioxidants decrease incidence of CVD. Regular consumption of nuts, rich in vitamin E and polyphenols reduces atherosclerosis, an important risk for heart disease. Intervention studies to date using alpha tocopherol (an active component of vitamin E) have not consistently proved beneficial. This thesis aims to investigate the effect of almond supplementation on vascular risk factors in healthy young males (18-3Syrs); mature males and female(>SOyrs); and males considered at increased risk of CVD (18-3Syrs) in a cohort of 67 subjects. The effects of almond intake were assessed after 2Sg/d for four weeks followed by SOg/d for four weeks and compared to a control group which did not consume almonds or change their diet. Cardiovascular risk was assessed by plasma lipid profiles, apolipoprotein A1, plasma nitrates/nitrates, vascular flow, BMl, blood pressure, sVCAM-1 and protein oxidation. Systolic and diastolic blood pressures were reduced in almond supplemented volunteers but not in controls. Dietary monounsaturated fatty acids, polyunsaturated fatty acid content and total dietary fats were increased by almond supplementation. Neither sVCAM-1, venous occlusion plethysmography nor plasma nitrite levels were affected by almond intake in any independent group. No significant changes in plasma lipids, and apolipoprotein A1 were observed. In conclusion almonds supplementation caused a reduction in blood pressure that may be due to increased sensitivity of the baroreceptors after increased monounsaturated fatty acid intake.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra‐short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro‐machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron‐ion or electron‐hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser‐plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self‐focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio‐temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Current anti-angiogenic treatments involve the attenuation of signalling via the pro-angiogenic vascular endothelial growth factor/receptor (VEGF/VEGFR) axis. Stimulation of angiogenesis by VEGF requires the activation of the calcineurin/nuclear factor of activated T-cells (NFAT) signal transduction pathway which is inhibited by Plasma Membrane Calcium ATPase 4 (PMCA4), an endogenous calcium extrusion pump. However, PMCA4s role in calcineurin/NFAT-dependent angiogenesis is unknown. Using “gain of function” studies, we show here that adenoviral overexpression of PMCA4 in human umbilical vein endothelial cells (HUVEC) inhibited NFAT activity, decreased the expression of NFAT-dependent pro-angiogenic proteins (regulator of calcineurin 1.4 (RCAN1.4) and cyclooxygenase-2) and diminished in vitro cell migration and tube formation in response to VEGF-stimulation. Furthermore, in vivo blood vessel formation was attenuated in a matrigel plug assay by ectopic expression of PMCA4. Conversely, “loss of function” experiments by si-RNA-mediated knockdown of PMCA4 in HUVEC or isolation of mouse lung endothelial cells from PMCA4−/− mice showed increased VEGF-induced NFAT activity, RCAN1.4 expression, in vitro endothelial cell migration, tube formation and in vivo blood vessel formation. Additionally, in an in vivo pathological angiogenesis model of limb ischemia, the reperfusion of the ischemic limb of PMCA4−/− mice was augmented compared to wild-type. Disruption of the interaction between endogenous PMCA4 and calcineurin by adenoviral overexpression of the region of PMCA4 that interacts with calcineurin (residues 428–651) increased NFAT activity, RCAN1.4 protein expression and in vitro tube formation. These results identify PMCA4 as an inhibitor of VEGF-induced angiogenesis, highlighting its potential as a new therapeutic target for anti-angiogenic treatments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim: To determine the impact of periodontitis on oxidative/inflammatory status and diabetes control in Type 2 diabetes. Materials and Methods: A comparative study of 20 Type 2 diabetes patients with periodontitis [body mass index (BMI) 31+5], 20-age/gender-matched, non-periodontitis Type 2 diabetes controls (BMI 29+6) and 20 non-diabetes periodontitis controls (BMI 25+4) had periodontal examinations and fasting blood samples collected. Oxidative stress was determined by plasma small molecule antioxidant capacity (pSMAC) and protein carbonyl levels; inflammatory status by total/differential leucocytes, fibrinogen and high sensitivity C-reactive protein (hsCRP); diabetes status by fasting glucose, HbA1c, lipid profile, insulin resistance and secretion. Statistical analysis was performed using SPSS. Results: pSMAC was lower (p=0.03) and protein carbonyls higher (p=0.007) in Type 2 diabetes patients with periodontitis compared with those without periodontitis. Periodontitis was associated with significantly higher HbA1c (p=0.002) and fasting glucose levels (p=0.04) and with lower ß-cell function (HOMA-ß; p=0.01) in diabetes patients. Periodontitis had little effect on inflammatory markers or lipid profiles, but Type 2 diabetes patients with periodontitis had higher levels of hsCRP than those without diabetes (p=0.004) and the lowest levels of HDL-cholesterol of all groups. Conclusion: Periodontitis is associated with increased oxidative stress and compromised glycaemic control in Type 2 diabetes patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a process for the lift-off of an ultrathin Si layer. By plasma hydrogenation of a molecular-beam-epitaxy-grown heterostructure of SiSb-doped-SiSi, ultrashallow cracking is controlled to occur at the depth of the Sb-doped layer. Prior to hydrogenation, an oxygen plasma treatment is used to induce the formation of a thin oxide layer on the surface of the heterostructure. Chemical etching of the surface oxide layer after hydrogenation further thins the thickness of the separated Si layer to be only 15 nm. Mechanisms of hydrogen trapping and strain-facilitated cracking are discussed. © 2005 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To investigate the relationship between retinal microvascular reactivity, circulatory markers for CVD risk and systemic antioxidative defence capacity in healthy middle-aged individuals with low to moderate risk of CVD. Methods: Retinal vascular reactivity to flickering light was assessed in 102 healthy participants (46-60 years) by means of dynamic retinal vessel analysis (DVA). Other vascular assessments included carotid intima-media thickness (C-IMT) and blood pressure (BP) measurements. Total cholesterol (CHOL), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG) and blood glutathione levels in its reduced (GSH) and oxidized (GSSG) forms were also determined for each participant, along with Framingham risk scores (FRS). Results: Retinal arterial baseline diameter fluctuation (BDF) was independently, significantly and negatively influenced by LDL-C levels (β = -0.53, p = 0.027). Moreover, the arterial dilation slope (SlopeAD) was independently, significantly and positively associated with redox index (GSH: GSSG ratio, β = 0.28, p = 0.016), while the arterial constriction slope (SlopeAC) was significantly and negatively influenced by blood GSH levels (β = -0.20, p = 0.042), and positively associated with FRS (β = 0.25, p = 0.009). Venous BDF and dilation amplitude (DA) were also negatively influenced by plasma LDL-C levels (β = -0.83, p = 0.013; and β = -0.22, p = 0.028, respectively). Conclusions: In otherwise healthy individuals with low to moderate cardiovascular risk, retinal microvascular dilation and constriction responses to stress levels are influenced by systemic antioxidant capacity, and circulating markers for cardiovascular risk.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrical and thermal transport properties of the carbon nanotube bulk material compacted by spark plasma sintering have been investigated. The electrical conductivity of the as-prepared sample shows a lnT dependence from 4 to 50 K, after which the conductivity begins to increase approximately linearly with temperature. A magnetic field applied perpendicularly to the sample increases the electrical conductivity in the range of 0-8T at all testing temperatures, indicating that the sample possesses the two-dimensional weak localization at lower temperatures (?50 K), while behaviors like a semimetal at higher temperatures (?50 K). This material acts like a uniform compact consisting of randomly distributed two dimensional graphene layers. For the same material, the thermal conductivity is found to decrease almost linearly with decreasing temperature, similar to that of a single multi-walled carbon nanotube. Magnetic fields applied perpendicularly to the sample cause the thermal conductivity to decrease significantly, but the influence of the magnetic fields becomes weak when temperature increases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is increasing evidence that non-enzymatic post-translational protein modifications might play key roles in various diseases. These protein modifications can be caused by free radicals generated during oxidative stress or by their products generated during lipid peroxidation. 4-Hydroxynonenal (HNE), a major biomarker of oxidative stress and lipid peroxidation, has been recognized as important molecule in pathology as well as in physiology of living organisms. Therefore, its detection and quantification can be considered as valuable tool for evaluating various pathophysiological conditions.The HNE-protein adduct ELISA is a method to detect HNE bound to proteins, which is considered as the most likely form of HNE occurrence in living systems. Since the earlier described ELISA has been validated for cell lysates and the antibody used for detection of HNE-protein adducts is non-commercial, the aim of this work was to adapt the ELISA to a commercial antibody and to apply it in the analysis of human plasma samples.After modification and validation of the protocol for both antibodies, samples of two groups were analyzed: apparently healthy obese (n=62) and non-obese controls (n=15). Although the detected absolute values of HNE-protein adducts were different, depending on the antibody used, both ELISA methods showed significantly higher values of HNE-protein adducts in the obese group. © 2013 The Authors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Self-standing diamond films were grown by DC Arcjet plasma enhanced chemical vapor deposition (CVD). The feed gasses were Ar/H 2/CH 4, in which the flow ratio of CH 4 to H 2 (FCH4/FH2) was varied from 5% to 20%. Two distinct morphologies were observed by scanning electron microscope (SEM), i.e. the pineapple-like morphology and the cauliflower-like morphology. It was found that the morphologies of the as-grown films are strongly dependent on the flow ratio of CH 4 to H 2 in the feed gasses. High resolution transmission electron microscope (HRTEM) survey results revealed that there were nanocrystalline grains within the pineapple-like films whilst there were ultrananocrystalline grains within cauliflower-like films. X-ray diffraction (XRD) results suggested that (110) crystalline plane was the dominant surface in the cauliflower-like films whilst (100) crystalline plane was the dominant surface in the pineapple-like films. Raman spectroscopy revealed that nanostructured carbon features could be observed in both types of films. Plasma diagnosis was carried out in order to understand the morphology dependent growth mechanism. It could be concluded that the film morphology was strongly influenced by the density of gas phases. The gradient of C2 radical was found to be different along the growth direction under the different growth conditions. © 2012 Elsevier B.V. All rights reserved.