3 resultados para Decomposition method.
em Aston University Research Archive
Resumo:
This paper examines the sources of structural changes in output growth of South Africa's economy over 1975-93 using a decomposition method within the inputoutput (IO) framework for analysing output changes from a demand side perspective. It decomposes output growth into private consumption, government consumption, investment and export components and also measures the impact of import substitution and changes in intermediate input use (as indicated by changes in IO coefficients). It is found that, before 1981, overall output growth was multi-components driven with all the above components contributing positively to economic growth. However, the collapse of investment demand is by far the single largest factor contributing to the economic stagnation that categorizes the post-1981 period.
Resumo:
The efficiency literature, both using parametric and non-parametric methods, has been focusing mainly on cost efficiency analysis rather than on profit efficiency. In for-profit organisations, however, the measurement of profit efficiency and its decomposition into technical and allocative efficiency is particularly relevant. In this paper a newly developed method is used to measure profit efficiency and to identify the sources of any shortfall in profitability (technical and/or allocative inefficiency). The method is applied to a set of Portuguese bank branches first assuming long run and then a short run profit maximisation objective. In the long run most of the scope for profit improvement of bank branches is by becoming more allocatively efficient. In the short run most of profit gain can be realised through higher technical efficiency. © 2003 Elsevier B.V. All rights reserved.
Resumo:
The thesis presents new methodology and algorithms that can be used to analyse and measure the hand tremor and fatigue of surgeons while performing surgery. This will assist them in deriving useful information about their fatigue levels, and make them aware of the changes in their tool point accuracies. This thesis proposes that muscular changes of surgeons, which occur through a day of operating, can be monitored using Electromyography (EMG) signals. The multi-channel EMG signals are measured at different muscles in the upper arm of surgeons. The dependence of EMG signals has been examined to test the hypothesis that EMG signals are coupled with and dependent on each other. The results demonstrated that EMG signals collected from different channels while mimicking an operating posture are independent. Consequently, single channel fatigue analysis has been performed. In measuring hand tremor, a new method for determining the maximum tremor amplitude using Principal Component Analysis (PCA) and a new technique to detrend acceleration signals using Empirical Mode Decomposition algorithm were introduced. This tremor determination method is more representative for surgeons and it is suggested as an alternative fatigue measure. This was combined with the complexity analysis method, and applied to surgically captured data to determine if operating has an effect on a surgeon’s fatigue and tremor levels. It was found that surgical tremor and fatigue are developed throughout a day of operating and that this could be determined based solely on their initial values. Finally, several Nonlinear AutoRegressive with eXogenous inputs (NARX) neural networks were evaluated. The results suggest that it is possible to monitor surgeon tremor variations during surgery from their EMG fatigue measurements.