11 resultados para Data Interpretation, Statistical

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a data based statistical study on the effects of seasonal variations in the growth rates of the gastro-intestinal (GI) parasitic infection in livestock. The alluded growth rate is estimated through the variation in the number of eggs per gram (EPG) of faeces in animals. In accordance with earlier studies, our analysis too shows that rainfall is the dominant variable in determining EPG infection rates compared to other macro-parameters like temperature and humidity. Our statistical analysis clearly indicates an oscillatory dependence of EPG levels on rainfall fluctuations. Monsoon recorded the highest infection with a comparative increase of at least 2.5 times compared to the next most infected period (summer). A least square fit of the EPG versus rainfall data indicates an approach towards a super diffusive (i. e. root mean square displacement growing faster than the square root of the elapsed time as obtained for simple diffusion) infection growth pattern regime for low rainfall regimes (technically defined as zeroth level dependence) that gets remarkably augmented for large rainfall zones. Our analysis further indicates that for low fluctuations in temperature (true on the bulk data), EPG level saturates beyond a critical value of the rainfall, a threshold that is expected to indicate the onset of the nonlinear regime. The probability density functions (PDFs) of the EPG data show oscillatory behavior in the large rainfall regime (greater than 500 mm), the frequency of oscillation, once again, being determined by the ambient wetness (rainfall, and humidity). Data recorded over three pilot projects spanning three measures of rainfall and humidity bear testimony to the universality of this statistical argument. 2013 Chattopadhyay and Bandyopadhyay.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents an investigation into the application of methods of uncertain reasoning to the biological classification of river water quality. Existing biological methods for reporting river water quality are critically evaluated, and the adoption of a discrete biological classification scheme advocated. Reasoning methods for managing uncertainty are explained, in which the Bayesian and Dempster-Shafer calculi are cited as primary numerical schemes. Elicitation of qualitative knowledge on benthic invertebrates is described. The specificity of benthic response to changes in water quality leads to the adoption of a sensor model of data interpretation, in which a reference set of taxa provide probabilistic support for the biological classes. The significance of sensor states, including that of absence, is shown. Novel techniques of directly eliciting the required uncertainty measures are presented. Bayesian and Dempster-Shafer calculi were used to combine the evidence provided by the sensors. The performance of these automatic classifiers was compared with the expert's own discrete classification of sampled sites. Variations of sensor data weighting, combination order and belief representation were examined for their effect on classification performance. The behaviour of the calculi under evidential conflict and alternative combination rules was investigated. Small variations in evidential weight and the inclusion of evidence from sensors absent from a sample improved classification performance of Bayesian belief and support for singleton hypotheses. For simple support, inclusion of absent evidence decreased classification rate. The performance of Dempster-Shafer classification using consonant belief functions was comparable to Bayesian and singleton belief. Recommendations are made for further work in biological classification using uncertain reasoning methods, including the combination of multiple-expert opinion, the use of Bayesian networks, and the integration of classification software within a decision support system for water quality assessment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We review recent progress in optical wave turbulence with a specific focus on the fast growing field of fibre lasers. Weak irregular nonlinear interactions between a large number of resonator modes are responsible for practically important characteristics of fibre lasers such as spectral broadening of radiation. Wave turbulence is a fundamental nonlinear phenomenon which occurs in a variety of nonlinear wave-bearing physical systems. The experimental impediments and the computationally intensive nature of simulating of hydrodynamic or plasma wave turbulence often make it rather challenging to collect a significant number of statistical data The study of turbulent wave behaviour in optical devices offers quite a unique opportunity to collect an enormous amount of data on statistical properties of wave turbulence using high-speed, high precision optical measurements during a relatively short period of time. We present recent theoretical, numerical and experimental results on optical wave turbulence in fibre lasers ranging from weak to strong developed turbulence for different signs of fibre dispersion. Furthermore, we report on our studies of spectral wave condensate in fibre lasers that make interdisciplinary links with a number of other research fields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We review recent progress in optical wave turbulence with a specific focus on the fast growing field of fibre lasers. Weak irregular nonlinear interactions between a large number of resonator modes are responsible for practically important characteristics of fibre lasers such as spectral broadening of radiation. Wave turbulence is a fundamental nonlinear phenomenon which occurs in a variety of nonlinear wave-bearing physical systems. The experimental impediments and the computationally intensive nature of simulating of hydrodynamic or plasma wave turbulence often make it rather challenging to collect a significant number of statistical data The study of turbulent wave behaviour in optical devices offers quite a unique opportunity to collect an enormous amount of data on statistical properties of wave turbulence using high-speed, high precision optical measurements during a relatively short period of time. We present recent theoretical, numerical and experimental results on optical wave turbulence in fibre lasers ranging from weak to strong developed turbulence for different signs of fibre dispersion. Furthermore, we report on our studies of spectral wave condensate in fibre lasers that make interdisciplinary links with a number of other research fields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To test the practicality and effectiveness of cheap, ubiquitous, consumer-grade smartphones to discriminate Parkinsons disease (PD) subjects from healthy controls, using self-administered tests of gait and postural sway. Background: Existing tests for the diagnosis of PD are based on subjective neurological examinations, performed in-clinic. Objective movement symptom severity data, collected using widely-accessible technologies such as smartphones, would enable the remote characterization of PD symptoms based on self-administered, behavioral tests. Smartphones, when backed up by interviews using web-based videoconferencing, could make it feasible for expert neurologists to perform diagnostic testing on large numbers of individuals at low cost. However, to date, the compliance rate of testing using smart-phones has not been assessed. Methods: We conducted a one-month controlled study with twenty participants, comprising 10 PD subjects and 10 controls. All participants were provided identical LG Optimus S smartphones, capable of recording tri-axial acceleration. Using these smartphones, patients conducted self-administered, short (less than 5 minute) controlled gait and postural sway tests. We analyzed a wide range of summary measures of gait and postural sway from the accelerometry data. Using statistical machine learning techniques, we identied discriminating patterns in the summary measures in order to distinguish PD subjects from controls. Results: Compliance was high all 20 participants performed an average of 3.1 tests per day for the duration of the study. Using this test data, we demonstrated cross-validated sensitivity of 98% and specicity of 98% in discriminating PD subjects from healthy controls. Conclusions: Using consumer-grade smartphone accelerometers, it is possible to distinguish PD from healthy controls with high accuracy. Since these smartphones are inexpensive (around $30 each) and easily available, and the tests are highly non-invasive and objective, we envisage that this kind of smartphone-based testing could radically increase the reach and effectiveness of experts in diagnosing PD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An increasing number of neuroimaging studies are concerned with the identification of interactions or statistical dependencies between brain areas. Dependencies between the activities of different brain regions can be quantified with functional connectivity measures such as the cross-correlation coefficient. An important factor limiting the accuracy of such measures is the amount of empirical data available. For event-related protocols, the amount of data also affects the temporal resolution of the analysis. We use analytical expressions to calculate the amount of empirical data needed to establish whether a certain level of dependency is significant when the time series are autocorrelated, as is the case for biological signals. These analytical results are then contrasted with estimates from simulations based on real data recorded with magnetoencephalography during a resting-state paradigm and during the presentation of visual stimuli. Results indicate that, for broadband signals, 50-100 s of data is required to detect a true underlying cross-correlations coefficient of 0.05. This corresponds to a resolution of a few hundred milliseconds for typical event-related recordings. The required time window increases for narrow band signals as frequency decreases. For instance, approximately 3 times as much data is necessary for signals in the alpha band. Important implications can be derived for the design and interpretation of experiments to characterize weak interactions, which are potentially important for brain processing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents a thorough and principled investigation into the application of artificial neural networks to the biological monitoring of freshwater. It contains original ideas on the classification and interpretation of benthic macroinvertebrates, and aims to demonstrate their superiority over the biotic systems currently used in the UK to report river water quality. The conceptual basis of a new biological classification system is described, and a full review and analysis of a number of river data sets is presented. The biological classification is compared to the common biotic systems using data from the Upper Trent catchment. This data contained 292 expertly classified invertebrate samples identified to mixed taxonomic levels. The neural network experimental work concentrates on the classification of the invertebrate samples into biological class, where only a subset of the sample is used to form the classification. Other experimentation is conducted into the identification of novel input samples, the classification of samples from different biotopes and the use of prior information in the neural network models. The biological classification is shown to provide an intuitive interpretation of a graphical representation, generated without reference to the class labels, of the Upper Trent data. The selection of key indicator taxa is considered using three different approaches; one novel, one from information theory and one from classical statistical methods. Good indicators of quality class based on these analyses are found to be in good agreement with those chosen by a domain expert. The change in information associated with different levels of identification and enumeration of taxa is quantified. The feasibility of using neural network classifiers and predictors to develop numeric criteria for the biological assessment of sediment contamination in the Great Lakes is also investigated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of quantitative methods has become increasingly important in the study of neuropathology and especially in neurodegenerative disease. Disorders such as Alzheimer's disease (AD) and the frontotemporal dementias (FTD) are characterized by the formation of discrete, microscopic, pathological lesions which play an important role in pathological diagnosis. This chapter reviews the advantages and limitations of the different methods of quantifying pathological lesions in histological sections including estimates of density, frequency, coverage, and the use of semi-quantitative scores. The sampling strategies by which these quantitative measures can be obtained from histological sections, including plot or quadrat sampling, transect sampling, and point-quarter sampling, are described. In addition, data analysis methods commonly used to analysis quantitative data in neuropathology, including analysis of variance (ANOVA), polynomial curve fitting, multiple regression, classification trees, and principal components analysis (PCA), are discussed. These methods are illustrated with reference to quantitative studies of a variety of neurodegenerative disorders.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose - Measurements obtained from the right and left eye of a subject are often correlated whereas many statistical tests assume observations in a sample are independent. Hence, data collected from both eyes cannot be combined without taking this correlation into account. Current practice is reviewed with reference to articles published in three optometry journals, viz., Ophthalmic and Physiological Optics (OPO), Optometry and Vision Science (OVS), Clinical and Experimental Optometry (CEO) during the period 20092012. Recent findings - Of the 230 articles reviewed, 148/230 (64%) obtained data from one eye and 82/230 (36%) from both eyes. Of the 148 one-eye articles, the right eye, left eye, a randomly selected eye, the better eye, the worse or diseased eye, or the dominant eye were all used as selection criteria. Of the 82 two-eye articles, the analysis utilized data from: (1) one eye only rejecting data from the adjacent eye, (2) both eyes separately, (3) both eyes taking into account the correlation between eyes, or (4) both eyes using one eye as a treated or diseased eye, the other acting as a control. In a proportion of studies, data were combined from both eyes without correction. Summary - It is suggested that: (1) investigators should consider whether it is advantageous to collect data from both eyes, (2) if one eye is studied and both are eligible, then it should be chosen at random, and (3) two-eye data can be analysed incorporating eyes as a within subjects factor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

EEG Hyperscanning is a method for studying two or more individuals simultaneously with the objective of elucidating how co-variations in their neural activity (i.e., hyperconnectivity) are influenced by their behavioral and social interactions. The aim of this study was to compare the performance of different hyper-connectivity measures using (i) simulated data, where the degree of coupling could be systematically manipulated, and (ii) individually recorded human EEG combined into pseudo-pairs of participants where no hyper-connections could exist. With simulated data we found that each of the most widely used measures of hyperconnectivity were biased and detected hyper-connections where none existed. With pseudo-pairs of human data we found spurious hyper-connections that arose because there were genuine similarities between the EEG recorded from different people independently but under the same experimental conditions. Specifically, there were systematic differences between experimental conditions in terms of the rhythmicity of the EEG that were common across participants. As any imbalance between experimental conditions in terms of stimulus presentation or movement may affect the rhythmicity of the EEG, this problem could apply in many hyperscanning contexts. Furthermore, as these spurious hyper-connections reflected real similarities between the EEGs, they were not Type-1 errors that could be overcome by some appropriate statistical control. However, some measures that have not previously been used in hyperconnectivity studies, notably the circular correlation co-efficient (CCorr), were less susceptible to detecting spurious hyper-connections of this type. The reason for this advantage in performance is discussed and the use of the CCorr as an alternative measure of hyperconnectivity is advocated. 2013 Burgess.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The representation of serial position in sequences is an important topic in a variety of cognitive areas including the domains of language, memory, and motor control. In the neuropsychological literature, serial position data have often been normalized across different lengths, and an improved procedure for this has recently been reported by Machtynger and Shallice (2009). Effects of length and a U-shaped normalized serial position curve have been criteria for identifying working memory deficits. We present simulations and analyses to illustrate some of the issues that arise when relating serial position data to specific theories. We show that critical distinctions are often difficult to make based on normalized data. We suggest that curves for different lengths are best presented in their raw form and that binomial regression can be used to answer specific questions about the effects of length, position, and linear or nonlinear shape that are critical to making theoretical distinctions. 2010 Psychology Press.