4 resultados para Daniel, P. A. (Peter Augustin)
em Aston University Research Archive
Resumo:
Non-steroidal anti-inflammatory drugs (NSAIDs) cause peptic ulcer disease, but whether they interact with Helicobacter pylori to promote damage is controversial. Moreover, the reported induction of apoptosis in gastric cells by H. pylori lipopolysaccharide (LPS) (10-9 g /ml) contrasts with studies showing low immunological potency of this LPS. Therefore, the effects of LPS from H. pylori NCTC 11637 and Escherichia coli 0111:B4 on apoptosis in a primary culture of guinea-pig gastric mucous cells were investigated in the presence and absence of the NSAID, ibuprofen. Cell loss was estimated by a crystal violet assay, and apoptosis determined from caspase activity and from condensation and fragmentation of nuclei. Exposure to E. coli LPS for 24 h caused cell loss and enhanced apoptotic activity at concentrations ≥ 10-9 g/ml, but similar effects were only obtained with H. pylori LPS at concentrations ≥10-6 g/ml. Although ibuprofen (250 μM) caused cell loss and apoptosis, addition of either E. coli or H. pylori LPSs further enhanced these effects. In conclusion, LPS and ibuprofen interact to enhance gastric cell loss and apoptosis. In such interactions, E. coli LPS is more potent than that of H. pylori. The low potency of H. pylori LPS may contribute to a chronic low-grade gastritis that can be enhanced by the use of NSAIDs. © W. S. Maney & Son Ltd.
Resumo:
The deliberate addition of Gaussian noise to cochlear implant signals has previously been proposed to enhance the time coding of signals by the cochlear nerve. Potentially, the addition of an inaudible level of noise could also have secondary benefits: it could lower the threshold to the information-bearing signal, and by desynchronization of nerve discharges, it could increase the level at which the information-bearing signal becomes uncomfortable. Both these effects would lead to an increased dynamic range, which might be expected to enhance speech comprehension and make the choice of cochlear implant compression parameters less critical (as with a wider dynamic range, small changes in the parameters would have less effect on loudness). The hypothesized secondary effects were investigated with eight users of the Clarion cochlear implant; the stimulation was analogue and monopolar. For presentations in noise, noise at 95% of the threshold level was applied simultaneously and independently to all the electrodes. The noise was found in two-alternative forced-choice (2AFC) experiments to decrease the threshold to sinusoidal stimuli (100 Hz, 1 kHz, 5 kHz) by about 2.0 dB and increase the dynamic range by 0.7 dB. Furthermore, in 2AFC loudness balance experiments, noise was found to decrease the loudness of moderate to intense stimuli. This suggests that loudness is partially coded by the degree of phase-locking of cochlear nerve fibers. The overall gain in dynamic range was modest, and more complex noise strategies, for example, using inhibition between the noise sources, may be required to get a clinically useful benefit. © 2006 Association for Research in Otolaryngology.
Resumo:
Purpose: Traditionally, it has been thought that no binocular combination occurs in amblyopia. However, there is a growing body of evidence that there are intact binocular mechanisms in amblyopia rendered inactive under normal viewing conditions due to imbalanced monocular inputs. Georgeson and Wallis (2014) recently introduced a novel method to investigate fusion, suppression and diplopia in normal population. We have modified this method to assess binocular interactions in amblyopia. Methods: Ten amblyopic and ten control subjects viewed briefly-presented (200 ms) pairs of dichoptically separated horizontal Gaussian blurred edges. Subjects reported one central edge, one offset edge, or a double edge as the vertical disparity was manipulated. The experiment was conducted at a range of spatial scales (blur widths of 4, 8, 16, and 32 arc min) and contrasts. Our model, based Georgeson and Wallis (2014), converted subjects’ responses into probabilities of fusion, suppression, and diplopia. Results: When the normal participants were presented equal contrast to each eye the probability of fusion gradually decreased with increasing disparity, as the probability of diplopia gradually increased. In only a small proportion of the trials, normal participants experienced suppression. The pattern was consistent across all edge blurs. Interestingly, the majority of amblyopes had a comparable pattern of fusion, i.e. decreasing probability with increasing disparity. However, with increasing disparity the amblyopes tended to suppress the amblyopic eye, experiencing diplopia only in a small proportion of trials particularly at large blurs. Increasing the interocular contrast offset favouring the amblyopic eye normalized the pattern of data in a way similar to normal participants. There were some interesting exceptions: strong suppressors for which our contrast range was inadequate and one case in which diplopia dominated. Conclusions: This task is suitable for assessing binocular interactions in amblyopic participants and providing a way to quantify the relationship between fusion, suppression and diplopia. In agreement with previous studies, our data indicate the presence of binocular mechanisms in amblyopia. A contrast offset favouring the amblyopic eye normalizes the measured binocular interactions in the amblyopic visual system.