20 resultados para DRUG RESISTANCE

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The term "pharmacogenetics" has been defined as the scientific study of inherited factors that affect the human drug response. Many pharmacogenetie studies have been published since 1995 and have focussed on the principal enzyme family involved in drug metabolism, the cytochrome P450 family, particularly cytochrome P4502C9 and 2C19. In order to investigate the pharmacogenetic aspect of pharmacotherapy, the relevant studies describing the association of pharmacogenetic factor(s) in drug responses must be retrieved from existing literature using a systematic review approach. In addition, the estimation of variant allele prevalence for the gene under study between different ethnic populations is important for pharmacogenetic studies. In this thesis, the prevalence of CYP2C9/2C19 alleles between different ethnicities has been estimated through meta-analysis and the population genetic principle. The clinical outcome of CYP2C9/2C19 allelic variation on the pharmacotherapy of epilepsy has been investigated; although many new antiepileptic drugs have been launched into the market, carbamazepine, phenobarbital and phenytoin are still the major agents in the pharmacotherapy of epilepsy. Therefore, phenytoin was chosen as a model AED and the effect of CYP2C9/2C19 genetic polymorphism on phenytoin metabolism was further examined.An estimation of the allele prevalence was undertaken for three CYP2C9/2C19 alleles respectively using a meta-analysis of studies that fit the Hardy-Weinberg equilibrium. The prevalence of CYP2C9*1 is approximately 81%, 96%, 97% and 94% in Caucasian, Chinese, Japanese, African populations respectively; the pooled prevalence of CYP2C19*1 is about 86%, 57%, 58% and 85% in these ethnic populations respectively. However, the studies of association between CYP2C9/2C19 polymorphism and phenytoin metabolism failed to achieve any qualitative or quantitative conclusion. Therefore, mephenytoin metabolism was examined as a probe drug for association between CYP2C19 polymorphism and mephenytoin metabolic ratio. Similarly, analysis of association between CYP2C9 polymorphism and warfarin dose requirement was undertaken.It was confirmed that subjects carrying two mutated CYP2C19 alleles have higher S/R mephenytoin ratio due to deficient CYP2C19 enzyme activity. The studies of warfarin and CYP2C9 polymorphism did not provide a conclusive result due to poor comparability between studies.The genetic polymorphism of drug metabolism enzymes has been studied extensively, however other genetic factors, such as multiple drug resistance genes (MDR) and genes encoding ion channels, which may contribute to variability in function of drug transporters and targets, require more attention in future pharmacogenetic studies of antiepileptic drugs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multidrug resistance protein 1 (MRP1) confers drug resistance and also mediates cellular efflux of many organic anions. MRP1 also transports glutathione (GSH); furthermore, this tripeptide stimulates transport of several substrates, including estrone 3-sulfate. We have previously shown that mutations of Lys(332) in transmembrane helix (TM) 6 and Trp(1246) in TM17 cause different substrate-selective losses in MRP1 transport activity. Here we have extended our characterization of mutants K332L and W1246C to further define the different roles these two residues play in determining the substrate and inhibitor specificity of MRP1. Thus, we have shown that TM17-Trp(1246) is crucial for conferring drug resistance and for binding and transport of methotrexate, estradiol glucuronide, and estrone 3-sulfate, as well as for binding of the tricyclic isoxazole inhibitor N-[3-(9-chloro-3-methyl-4-oxo-4H-isoxazolo-[4,3-c]quinolin-5-yl)-cyclohexylmethyl]-benzamide (LY465803). In contrast, TM6-Lys(332) is important for enabling GSH and GSH-containing compounds to serve as substrates (e.g., leukotriene C(4)) or modulators (e.g., S-decyl-GSH, GSH disulfide) of MRP1 and, further, for enabling GSH (or S-methyl-GSH) to enhance the transport of estrone 3-sulfate and increase the inhibitory potency of LY465803. On the other hand, both mutants are as sensitive as wild-type MRP1 to the non-GSH-containing inhibitors (E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid (MK571), 1-[2-hydroxy-3-propyl-4-[4-(1H-tetrazol-5-yl)butoxy]phenyl]-ethanone (LY171883), and highly potent 6-[4'-carboxyphenylthio]-5[S]-hydroxy-7[E], 11[Z]14[Z]-eicosatetrenoic acid (BAY u9773). Finally, the differing abilities of the cysteinyl leukotriene derivatives leukotriene C(4), D(4), and F(4) to inhibit estradiol glucuronide transport by wild-type and K332L mutant MRP1 provide further evidence that TM6-Lys(332) is involved in the recognition of the gamma-Glu portion of substrates and modulators containing GSH or GSH-like moieties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solid tumours display a complex drug resistance phenotype that involves inherent and acquired mechanisms. Multicellular resistance is an inherent feature of solid tumours and is known to present significant barriers to drug permeation in tumours. Given this barrier, do acquired resistance mechanisms such as P-glycoprotein (P-gp) contribute significantly to resistance? To address this question, the multicellular tumour spheroid (MCTS) model was used to examine the influence of P-gp on drug distribution in solid tissue. Tumour spheroids (TS) were generated from either drug-sensitive MCF7WT cells or a drug-resistant, P-gp-expressing derivative MCF7Adr. Confocal microscopy was used to measure time courses and distribution patterns of three fluorescent compounds; calcein-AM, rhodamine123 and BODIPY-taxol. These compounds were chosen because they are all substrates for P-gp-mediated transport, exhibit high fluorescence and are chemically dissimilar. For example, BODIPY-taxol and rhodamine 123 showed high accumulation and distributed extensively throughout the TSWT, whereas calcein-AM accumulation was restricted to the outermost layers. The presence of P-gp in TSAdr resulted in negligible accumulation, regardless of the compound. Moreover, the inhibition of P-gp by nicardipine restored intracellular accumulation and distribution patterns to levels observed in TSWT. The results demonstrate the effectiveness of P-gp in modulating drug distribution in solid tumour models. However, the penetration of agents throughout the tissue is strongly determined by the physico-chemical properties of the individual compounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tissue transglutaminase (TG2) has been suggested to be a key player in the progression and metastasis of chemoresistant breast cancer. One of the foremost survival signalling pathways implicated in causing drug resistance in breast cancer is the constitutive activation of NFκB (Nuclear Factor -kappa B) induced by TG2. This study provides a mechanism by which TG2 constitutively activates NFκB which in turn confers chemoresistance to breast cancer cells against doxorubicin. Breast cancer cell lines with varying expression levels of TG2 as well as TG2 null breast cancer cells transfected with TG2 were used as the major cell models for this study. This study made use of cell permeable and impermeable TG2 inhibitors, specific TG2 and Rel A/ p65 targeting siRNA, TG2 functional blocking antibodies, IKK inhibitors and a specific targeting peptide against Rel A/p65 to investigate the pathway of activation involved in the constitutive activation of NFκB by TG2 leading to drug resistance. Crucial to the activation of Rel A/p65 and drug resistance in the breast cancer cells is the interaction between the complex of IκBα and Rel A/p65 with TG2 which results in the dimerization of Rel A/p65 and polymerization of IκBα. The association of TG2 with the IκBα-NFκB complex was determined to be independent of IKKα/β function. The polymerized IκBα is degraded in the cytoplasm by the μ-calpain pathway which allows the cross linked Rel A/ p65 dimers to translocate into the nucleus. Using R283 and ZDON (cell permeable TG2 activity inhibitors) and specific TG2 targeting siRNA, the Rel A/ p65 dimer formation could be inhibited. Co-immunoprecipitation studies confirmed that the phosphorylation of the Rel A/p65 dimers at the Ser536 residue by IKKε took place in the cell nucleus. Importantly, this study also investigated the transcriptional regulation of the TGM2 gene by the pSer536 Rel A/ p65 dimer and the importance of this TG2-NFκB feedback loop in conferring drug resistance to breast cancer cells. This data provides evidence that TG2 could be a key therapeutic target in the treatment of chemoresistant breast cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drug resistance was first identified in cancer cells that express proteins known as multidrug resistance proteins that extrude the therapeutic agents out of the cells resulting in alteration of pharmacokinetics, tissue distribution, and pharmacodynamics of drugs. To this end studies were carried out to investigate the role of pharmacological inhibitors and pharmaceutical excipients with a primary focus on P-glycoprotein (P-gp). The aim of this study was to investigate holistic changes in transporter gene expression during permeability upon formulation of indomethacin as solid dispersion. Initial characterization studies of solid dispersion of indomethacin showed that the drug was dispersed within the carrier in amorphous form. Analysis of permeability data across Caco-2 monolayers revealed that drug absorption increased by 4-fold when reformulated as solid dispersion. The last phase of the work involved investigation of gene expression changes of transporter genes during permeability. The results showed that there were significant differences in the expression of both ATP-binding cassette (ABC) transporter genes as well as solute carrier transporter (SLC) genes suggesting that the inclusion of polyethylene glycol as well as changes in molecular form of drug from crystalline to amorphous have a significant bearing on the expression of transporter network genes resulting in differences in drug permeability. © 2011 Informa UK, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Recent attention on chemotherapeutic intervention against cancer has been focused on discovering and developing phytochemicals as anticancer agents with improved efficacy, low drug resistance and toxicity, low cost and limited adverse side effects. In this study, we investigated the effects of Curcuma C20-dialdehyde on growth, apoptosis and cell cycle arrest in colon and cervical cancer cell lines. Materials and Methods: Antiproliferative, apoptosis induction, and cell cycle arrest activities of Curcuma C20-dialdehyde were determined by WST cell proliferation assay, flow cytometric Alexa fluor 488-annexin V/propidium iodide (PI) staining and PI staining, respectively. Results: Curcuma C20 dialdehyde suppressed the proliferation of HCT116, HT29 and HeLa cells, with IC50 values of 65.4±1.74 μg/ml, 58.4±5.20 μg/ml and 72.0±0.03 μg/ml, respectively, with 72 h exposure. Flow cytometric analysis revealed that percentages of early apoptotic cells increased in a dose-dependent manner upon exposure to Curcuma C20-dialdehyde. Furthermore, exposure to lower concentrations of this compound significantly induced cell cycle arrest at G1 phase for both HCT116 and HT29 cells, while higher concentrations increased sub-G1 populations. However, the concentrations used in this study could not induce cell cycle arrest but rather induced apoptotic cell death in HeLa cells. Conclusions: Our findings suggest that the phytochemical Curcuma C20-dialdehyde may be a potential antineoplastic agent for colon and cervical cancer chemotherapy and/or chemoprevention. Further studies are needed to characterize the drug target or mode of action of the Curcuma C20-dialdehyde as an anticancer agent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signalling pathway regulates many cellular functions, including proliferation, differentiation, and transformation. To reliably convert external stimuli into specific cellular responses and to adapt to environmental circumstances, the pathway must be integrated into the overall signalling activity of the cell. Multiple mechanisms have evolved to perform this role. In this review, we will focus on negative feedback mechanisms and examine how they shape ERK1/2 MAPK signalling. We will first discuss the extensive number of negative feedback loops targeting the different components of the ERK1/2 MAPK cascade, specifically the direct posttranslational modification of pathway components by downstream protein kinases and the induction of de novo gene synthesis of specific pathway inhibitors. We will then evaluate how negative feedback modulates the spatiotemporal signalling dynamics of the ERK1/2 pathway regarding signalling amplitude and duration as well as subcellular localisation. Aberrant ERK1/2 activation results in deregulated proliferation and malignant transformation in model systems and is commonly observed in human tumours. Inhibition of the ERK1/2 pathway thus represents an attractive target for the treatment of malignant tumours with increased ERK1/2 activity. We will, therefore, discuss the effect of ERK1/2 MAPK feedback regulation on cancer treatment and how it contributes to reduced clinical efficacy of therapeutic agents and the development of drug resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Helicobacter pylori is one of the most common pathogenic bacterial infections, colonising an estimated half of all humans. It is associated with the development of serious gastroduodenal disease - including peptic ulcers, gastric lymphoma and acute chronic gastritis. Current recommended regimes are not wholly effective and patient compliance, side-effects and bacterial resistance can be problematic. Drug delivery to the site of residence in the gastric mucosa may improve efficacy of the current and emerging treatments. Gastric retentive delivery systems potentially allow increased penetration of the mucus layer and therefore increased drug concentration at the site of action. Proposed gastric retentive systems for the enhancement of local drug delivery include floating systems, expandable or swellable systems and bioadhesive systems. Generally, problems with these formulations are lack of specificity, limited to mucus turnover or failure to persist in the stomach. Gastric mucoadhesive systems are hailed as a promising technology to address this issue, penetrating the mucus layer and prolonging activity at the mucus-epithelial interface. This review appraises gastroretentive delivery strategies specifically with regard to their application as a delivery system to target Helicobacter. As drug-resistant strains emerge, the development of a vaccine to eradicate and prevent reinfection is an attractive proposition. Proposed prophylactic and therapeutic vaccines have been delivered using a number of mucosal routes using viral and non-viral vectors. The delivery form, inclusion of adjuvants, and delivery regime will influence the immune response generated. © 2005 Bentham Science Publishers Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alteration in the target sites of antibiotics is a common mechanism of resistance. Examples of clinical strains showing resistance can be found for every class of antibiotic, regardless of the mechanism of action. Target site changes often result from spontaneous mutation of a bacterial gene on the chromosome and selection in the presence of the antibiotic. Examples include mutations in RNA polymerase and DNA gyrase, resulting in resistance to the rifamycins and quinolones, respectively. In other cases, acquisition of resistance may involve transfer of resistance genes from other organisms by some form of genetic exchange (conjugation, transduction, or transformation). Examples of these mechanisms include acquisition of the mecA genes encoding methicillin resistance in Staphylococcus aureus and the various van genes in enterococci encoding resistance to glycopeptides. © 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of Caco-2 monolayers were compared on aluminium oxide and nitrocellulose permeable-supports. On nitrocellulose, Caco-2 cells displayed a higher rate of taurocholic acid transport than those cultured on aluminium oxide inserts. In addition, Caco-2 cells grown on these two inserts were not comparable with respect to cell morphology, cell numbers and transepithelial electrical resistance. The low adsorption potential of the aluminium oxide inserts, particularly for high molecular weight or lipophilic ligands, offers a distinct advantage over nitrocellulose inserts for drug transport studies. The carrier-mediated uptake and transport of the imino acid (L-proline) and the acidic amino acids (L-aspartate and L-glutamate) have been studied. At pH7.4, L-proline uptake is mediated via an A-system carrier. Elevated uptake and transport under acidic conditions occurs by activation of a distinct carrier population. Acidic amino acid transport is mediated via a X-AG system. The flux of baclofen, CGP40116 andCGP40117 across Caco-2 monolayers was described by passive transport. The transport of three peptides, thyrotrophin-releasing hormone, SQ29852 and cyclosporin were investigated. Thyrotrophin-releasing hormone transport acrossCaco-2 monolayers was characterised by a minor saturable (carrier-mediated,approximately 25%) pathway, superimposed onto a major non-saturable (diffusional)pathway. SQ29852 uptake into Caco-2 monolayers is described by a major saturable mechanism (Km = 0.91 mM) superimposed onto a minor passive component.However, the initial-rate of SQ29852 transport is consistent with a passive transepithelial transport mechanism. These data highlight the possibility that itsbasolateral efflux is severely retarded such that the passive paracellular transportdictates the overall transepithelial transport characteristics. In addition, modelsuitable for investigating the transepithelial transport of cyclosporin A has been developed. A modification of the conventional Caco-2 model has been developed which has a calcium-free Ap donor-solution and a Bl receiver-solution containing the minimumcalcium concentration required to maintain monolayer integrity (100 μM). The influence of calcium and magnesium on the absorption of [14C]pamidronate was evaluated by comparing its transport across the conventional and minimum calciumCaco-2 models. Ap calcium and magnesium ions retard the Ap-to-Bl flux of pamidronate across Caco-2 monolayers. The effect of self-emulsifying oleic acid-Tween 80 formulations on Caco-2monolayer integrity has been investigated. Oleic acid-Tween 80 (1 0:1) formulations produced a dose-dependent disruption of Caco-2 monolayer integrity. This disruption was related to the oleic acid content of the formulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liposomes due to their biphasic characteristic and diversity in design, composition and construction, offer a dynamic and adaptable technology for enhancing drug solubility. Starting with equimolar egg-phosphatidylcholine (PC)/cholesterol liposomes, the influence of the liposomal composition and surface charge on the incorporation and retention of a model poorly water soluble drug, ibuprofen was investigated. Both the incorporation and the release of ibuprofen were influenced by the lipid composition of the multi-lamellar vesicles (MLV) with inclusion of the long alkyl chain lipid (dilignoceroyl phosphatidylcholine (C 24PC)) resulting in enhanced ibuprofen incorporation efficiency and retention. The cholesterol content of the liposome bilayer was also shown to influence ibuprofen incorporation with maximum ibuprofen incorporation efficiency achieved when 4 μmol of cholesterol was present in the MLV formulation. Addition of anionic lipid dicetylphosphate (DCP) reduced ibuprofen drug loading presumably due to electrostatic repulsive forces between the carboxyl group of ibuprofen and the anionic head-group of DCP. In contrast, the addition of 2 μmol of the cationic lipid stearylamine (SA) to the liposome formulation (PC:Chol - 16 μmol:4 μmol) increased ibuprofen incorporation efficiency by approximately 8%. However further increases of the SA content to 4 μmol and above reduced incorporation by almost 50% compared to liposome formulations excluding the cationic lipid. Environmental scanning electron microscopy (ESEM) was used to dynamically follow the changes in liposome morphology during dehydration to provide an alternative assay of liposome stability. ESEM analysis clearly demonstrated that ibuprofen incorporation improved the stability of PC:Chol liposomes as evidenced by an increased resistance to coalescence during dehydration. These finding suggest a positive interaction between amphiphilic ibuprofen molecules and the bilayer structure of the liposome. © 2004 Elsevier B.V. All rights reserved.