2 resultados para DOMAIN-WALL

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The so-called "internal modes" localized near the domain boundaries in quasi-two dimensional antiferromagnets are investigated. The possible localized states are classified and their frequency dependences on the system discreteness parameter λ=J/β, which describes the ratio of the magnitudes of the exchange interplane interaction and the magnetic anisotropy, are found. A sudden change in the spectrum of the local internal modes is observed at a critical value of this parameter, λ=λb=3/4, where the domain wall shifts from a collinear to a canted shape. When λ<λb there are one symmetric and two antisymmetric local modes, and when λ>λb the modes are two symmetric, one antisymmetric, and one shear. For discreteness parameters close to the critical value, the frequencies of some of the local modes lie deep inside the gap for the linear AFM magnon spectrum and can be observed experimentally. © 2010 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Grain size effects on the physical properties of polycrystalline ferroelectrics have been extensively studied for decades; however there are still major controversies regarding the dependence of the piezoelectric and ferroelectric properties on the grain size. Dense BaTiO3 ceramics with different grain sizes were fabricated by either conventional sintering or spark plasma sintering using micro- and nano-sized powders. The results show that the grain size effect on the dielectric permittivity is nearly independent of the sintering method and starting powder used. A peak in the permittivity is observed in all the ceramics with a grain size near 1μm and can be attributed to a maximum domain wall density and mobility. The piezoelectric coefficient d33 and remnant polarization Pr show diverse grain size effects depending on the particle size of the starting powder and sintering temperature. This suggests that besides domain wall density, other factors such as back fields and point defects, which influence the domain wall mobility, could be responsible for the different grain size dependence observed in the dielectric and piezoelectric/ferroelectric properties. In cases where point defects are not the dominant contributor, the piezoelectric constant d33 and the remnant polarization Pr increase with increasing grain size.