14 resultados para DNA vaccines

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formulation of plasmid DNA (pDNA) in cationic liposomes is a promising strategy to improve the potency of DNA vaccines. In this respect, physicochemical parameters such as liposome size may be important for their efficacy. The aim of the current study was to investigate the effect of vesicle size on the in vivo performance of liposomal pDNA vaccines after subcutaneous vaccination in mice. The tissue distribution of cationic liposomes of two sizes, 500 nm (PDI 0.6) and 140 nm (PDI 0.15), composed of egg PC, DOPE and DOTAP, with encapsulated OVA-encoding pDNA, was studied by using dual radiolabeled pDNA-liposomes. Their potency to elicit cellular and humoral immune responses was investigated upon application in a homologous and heterologous vaccination schedule with 3 week intervals. It was shown that encapsulation of pDNA into cationic lipsomes resulted in deposition at the site of injection, and strongest retention was observed at large vesicle size. The vaccination studies demonstrated a more robust induction of OVA-specific, functional CD8+ T-cells and higher antibody levels upon vaccination with small monodisperse pDNA-liposomes, as compared to large heterodisperse liposomes or naked pDNA. The introduction of a PEG-coating on the small cationic liposomes resulted in enhanced lymphatic drainage, but immune responses were not improved when compared to non-PEGylated liposomes. In conclusion, it was shown that the physicochemical properties of the liposomes are of crucial importance for their performance as pDNA vaccine carrier, and cationic charge and small size are favorable properties for subcutaneous DNA vaccination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of DNA vaccines has heralded a new technology allowing the design and elicitation of immune responses more adequate for a wider range of pathogens. The formulation of these vaccines into the desired dosage forms extends their capability in terms of stability, routes of administration and efficacy. This thesis describes an investigation into the fabrication of plasmid DNA, the active principle of DNA vaccines, into microspheres, based on the tenet of an increased cellular uptake of microparticulate matter by phagocytic cells. The formulation of plasmid DNA into microspheres using two methods, is presented. Formulation of microspheric plasmid DNA using the double emulsion solvent evaporation method and a spray-drying method was explored. The former approach involves formation of a double emulsion, by homogenisation. This method produced microspheres of uniform size and smooth morphology, but had a detrimental effect on the formulated DNA. The spray-drying method resulted in microspheres with an improved preservation of DNA stability. The use of polyethylenimine (PEI) and stearylamine (SA) as agents in the microspheric formulation of plasmid DNA is a novel approach to DNA vaccine design. Using these molecules as model positively-charged agents, their influence on the characteristics of the microspheric formulations was investigated. PEI improved the entrapment efficiency of the plasmid DNA in microspheres, and has minimal effect on either the surface charge, morphology or size distribution of the formulations. Stearylamine effected an increase in the entrapment efficiency and stability of the plasmid DNA and its effect on the micropshere morphology was dependent on the method of preparation. The differences in the effects of the two molecules on microsphere formulations may be attributable to their dissimilar physico-chemical properties. PEI is water-soluble and highly-branched, while SA is hydrophobic and amphipathic. The positive charge of both molecules is imparted by amine functional groups. Preliminary data on the in vivo application of formulated DNA vaccine, using hepatitis B plasmid, showed superior humoral responses to the formulated antigen, compared with free (unformulated) antigen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this research was to formulate a novel biodegradable, biocompatible cationic microparticle vector for the delivery of DNA vaccines. The work builds upon previous research by Singh et al which described the adsorption of DNA to the surface of poly (D,L-lactide-co-glycolide) (PLG) microparticles stabilised with the surfactant cetyltrimethyl ammonium bromide (CT AB). This work demonstrated the induction of antibody and cellular immune responses to HIV proteins encoded on plasmid DNA adsorbed to the particle surface in mice, guinea pigs and non-human primates (Singh et aI, 2000; O'Hagan et aI, 2001). However, the use of surfactants in microparticle formulations for human vaccination is undesirable due to long term safety issues. Therefore, the present research aim was to develop an adsorbed DNA vaccine with enhanced potency and increased safety compared to CTAB stabilised PLG microparticles (PLG/CTAB) by replacement of the surfactant CTAB with an alternative cationic agent. The cationic polymers chitosan and poly (N- vinylpyrrolidone/2-dimethylaminoethyl methacrylate), dimethyl sulfate quaternary (PVP-PDAEMA) were investigated as alternative stabilisers to CTAB. From a variety of initial formulations, the most promising vector(s) for DNA vaccination were selected based on physicochemical data (chapter 3) and in vitro DNA loading and release characteristics (chapter 4). The chosen formulation(s) were analysed in greater depth (chapters 3 and 4), and gene expression was assessed by in vitro cell transfection studies using 293T kidney epithelial and C2C12 myoblast non-phagocytic cell lines (chapter 5). The cytotoxicity of the microparticles and their constituents were also evaluated in vitro (chapter 5). Stability and suitability of the formulation(s) for commercial production were assessed by cryopreparation and lyophilisation studies (chapters 3 and 4). Gene expression levels in cells of the immune response were evaluated by microparticle transfection of the dendritic cell (DC) line 2.4 and primary bone marrow derived DCs (chapter 6). In vivo, mice were injected i.m. with the formulations deemed most promising on the basis of in vitro studies and humoral and cellular immune responses were evaluated (chapter 6).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compared to naked DNA immunisation, entrapment of plasmid-based DNA vaccines into liposomes by the dehydration-rehydration method has shown to enhance both humoural and cell-mediated immune responses to encoded antigens administered by a variety of routes. In this paper we have compared the potency of lipid-based and non-ionic surfactant based vesicle carrier systems for DNA vaccines after subcutaneous immunisation. Plasmid pI.18Sfi/NP containing the nucleoprotein (NP) gene of A/Sichuan/2/87 (H3N2) influenza virus in the pI.18 expression vector was incorporated by the dehydration-rehydration method into various vesicle formulations. The DRV method, entailing mixing of small unilamellar vesicles (SUV) with DNA, followed by dehydration and rehydration, yielded high DNA vaccine incorporation values (85-97% of the DNA used) in all formulations. Studies on vesicle size revealed lipid-based systems formed cationic submicron size vesicles whilst constructs containing a non-ionic surfactant had significantly large z-average diameters (>1500 nm). Subcutaneous vesicle-mediated DNA immunisation employing two DRV(DNA) formulations as well as naked DNA revealed that humoural responses (immunoglobulin total IgG, and subclasses IgG 1 and 1gG 2a) engendered by the plasmid encoded nucleoprotein were substantially higher after dosing twice, 28 days apart with 10 μg DRV-entrapped DNA compared to naked DNA. Comparison between the lipid and non-ionic based vesicle formulations revealed no significant difference in stimulated antibody production. These results suggest that, not only can DNA be effectively entrapped within a range of lipid and non-ionic based vesicle formulations using the DRV method but that such DRV vesicles containing DNA may be a useful system for subcutaneous delivery of DNA vaccines. © 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intramuscular injection of naked plasmid DNA is known (1-3) to elicit humoral and cell-mediated immune responses against the encoded antigen. It is thought (2,3) that immunity follows DNA uptake by muscle cells, leading to the expression and extracellular release of the antigen which is then taken up by antigen presenting cells (APC). In addition, it is feasible that some of the injected DNA is taken up directly by APC. Disadvantages (1-3) of naked DNA vaccination include: uptake of DNA by only a minor fraction of muscle cells, exposure of DNA to deoxyribonuclease in the interstitial fluid thus necessitating the use of relatively large quantities of DNA, and, in some cases, injection into regenerating muscle in order to enhance immunity. We have recently proposed (1,4) that DNA immunization via liposomes (phospholipid vesicles) could circumvent the need of muscle involvement and instead facilitate (5) uptake of DNA by APC infiltrating the site of injection or in the lymphatics, at the same time protecting DNA from nuclease attack (6). Moreover, transfection of APC with liposomal DNA could be promoted by the judicial choice of vesicle surface charge, size and lipid composition, or by the co-entrapment, together with DNA, of plasmids expressing appropriate cytokines (e.g., interleukin 2), or immunostimulatory sequences.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Compared to naked DNA immunisation, entrapment of plasmid-based DNA vaccines into liposomes by the dehydration-rehydration method has shown to enhance both humoural and cell-mediated immune responses to encoded antigens administered by a variety of routes. In this paper, we have investigated the application of liposome-entrapped DNA and their cationic lipid composition on such potency after subcutaneous immunisation. Plasmid pI.18Sfi/NP containing the nucleoprotein (NP) gene of A/Sichuan/2/87 (H3N2) influenza virus in the pI.18 expression vector was incorporated by the dehydration-rehydration method into liposomes composed of 16 μmol egg phosphatidylcholine (PC), 8 μmoles dioleoyl phosphatidylethanolamine (DOPE) or cholesterol (Chol) and either the cationic lipid 1,2-diodeoyl-3-(trimethylammonium) propane (DOTAP) or cholesteryl 3-N-(dimethyl amino ethyl) carbamate (DC-Chol). This method, entailing mixing of small unilamellar vesicles (SUV) with DNA, followed by dehydration and rehydration, yielded incorporation values of 90-94% of the DNA used. Mixing or rehydration of preformed cationic liposomes with 100 μg plasmid DNA also led to similarly high complexation values (92-94%). In an attempt to establish differences in the nature of DNA association with these various liposome preparations their physico-chemical characteristics were investigated. Studies on vesicle size, zeta potential and gel electrophoresis in the presence of the anion sodium dodecyl sulphate (SDS) indicate that, under the conditions employed, formulation of liposomal DNA by the dehydration-rehydration generated submicron size liposomes incorporating most of the DNA in a manner that prevents DNA displacement through anion competition. The bilayer composition of these dehydration-rehydration vesicles (DRV(DNA)) can also further influence these physicochemical characteristics with the presence of DOPE within the liposome bilayer resulting in a reduced vesicle zeta potential. Subcutaneous liposome-mediated DNA immunisation employing two DRV(DNA) formulations as well as naked DNA revealed that humoural responses (immunoglobulin total IgG, and subclasses IgG1 and 1gG2a) engendered by the plasmid encoded NP were substantially higher after dosing twice, 28 days apart with 10 μg liposome-entrapped DNA compared to naked DNA. At all time points measured, mice immunised with naked DNA showed no greater immune response compared to the control, non-immunised group. In contrast, as early as day 49, responses were significantly higher in mice injected with DNA entrapped in DRV liposomes containing DOTAP compared to the control group and mice immunised with naked DNA. By day 56, all total IgG responses from mice immunised with both DRV formulations were significantly higher. Comparison between the DRV formulations revealed no significant difference in immune responses elicited except at day 114, where the humoural responses of the group injected with liposomal formulation containing DC-Chol dropped to significantly lower levels that those measured in mice which received the DOTAP formulation. Similar results were found when the IgG1 and IgG2a subclass responses were determined. These results suggest that, not only can DNA be effectively entrapped within liposomes using the DRV method but that such DRV liposomes containing DNA may be a useful system for subcutaneous delivery of DNA vaccines. © 2003 Taylor & Francis Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work we have established the efficient mucosal delivery of vaccines using absorption enhancers and chitosan. In addition, the use of chitosan was shown to enhance the action of other known adjuvants, such as CTB or Quil-A. Collectively, the results presented herein indicate that chitosan has excellent potential as a mucosal adjuvant. We have evaluated a number of absorption enhancers for their adjuvant activity in vivo. Polyornithine was shown to engender high scrum immune reasons to nasally delivered antigens, with higher molecular weight polyornithine facilitating the best results. We have demonstrated for the first time that vitamin E TPGS can act as mucosal adjuvant. Deoxycholic acid, cyclodextrins and acylcarnitines were also identified as effective mucosal adjuvants and showed enhanced immune responses to nasally delivered TT, DT and Yersinia pestis V and F1 antigens. Previously, none of these agents, common in their action as absorption enhancing agents, have been shown to have immunopotentiating activity for mucosal immunisation. We have successfully developed novel surface modified microspheres using chitosan as an emulsion stabiliser during the preparation of PLA microspheres. It was found that immune responses could be substantially increased, effectively exploiting the immunopenetrating characteristics of both chitosan and PLA microspheres in the same delivery vehicle. In the same study, comparison of intranasal and intramuscular routes of administration showed that with these formulations, the nasal route could be as effective as intramuscular delivery, highlighting the potential of mucosal administration for these particulate delivery systems. Chitosan was co-administered with polymer microspheres. It was demonstrated that this strategy facilitates markedly enhanced immune responses in both magnitude and duration following intramuscular administration. We conclude that this combination shows potential for single dose administration of vaccines. In another study, we have shown that the addition of chitosan to alum adsorbed TT was able to enhance immune responses. PLA micro/nanospheres were prepared and characterised with discreet particle size ranges. A smaller particle size was shown to facilitate higher scrum IgG responses following nasal administration. A lower antigen loading was additionally identified as being preferential for the induction of immune responses in combination with the smaller particle size. This may be due to the fact that the number of particles will be increased when antigen loading is low, which may in turn facilitate a more widespread uptake of particles. PLA lamellar particles were prepared and characterised. Adsorbed TT was evaluated for the potential to engender immune responses in vivo. These formulations were shown to generate effective immune responses following intramuscular administration. Positively charged polyethylcyanoacrylate and PLA nanoparticies were designed and characterised and their potential as delivery vehicles for DNA vaccines was investigated. Successful preparation of particles with narrow size distribution and positive surface charge (imparted by the inclusion of chitosan) was achieved. In the evaluation of antibody responses to DNA encoded antigen in the presence of alum administered intranasally, discrimination between the groups was only seen following intramuscular boosting with the corresponding protein. Our study showed that DNA vaccines in the presence of either alum or Quil-A may advantageously influence priming of the immune system by a mucosal route. The potential for the combination of adjuvants, Quil-A and chitosan, to enhance antibody responses to plasmid encoded antigen co-administered with the corresponding protein antigen was shown and this is worthy of further investigation. The findings here have identified novel adjuvants and approaches to vaccine delivery. In particular, chitosan or vitamin E TPGS are shown here to have considerable promise as non-toxic, safe mucosal adjuvants. In addition, biodegradable mucoadhesive delivery systems, surface modified with chitosan in a single step process, may have application for other uses such as drug and gene delivery.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plasmid DNA pRc/CMV HBS encoding the S (small) region of hepatitis B surface antigen (HBsAg) was incorporated by the dehydration-rehydration method into Lipodine™ liposomes composed of 16 μmoles phosphatidylcholine (PC) or distearoyl phosphatidylcholine (DSPC), 8 μmoles of (dioleoyl phosphatidylethanolamine (DOPE) or cholesterol and 4 μmoles of the cationic lipid 1,2-dioleoyl-3-(trimethylammonium propane (DOTAP) (molar ratios 1:0.5:0.25). Incorporation efficiency was high (89-93% of the amount of DNA used) in all four formulations tested and incorporated DNA was shown to be resistant to displacement in the presence of the competing anionic sodium dodecyl sulphate molecules. This is consistent with the notion that most of the DNA is incorporated within the multilamellar vesicles structure rather than being vesicle surface-complexed. Stability studies performed in simulated intestinal media also demonstrated that dehydration-rehydration vesicles (DRV) incorporating DNA (DRV(DNA)) were able to retain significantly more of their DNA content compared to DNA complexed with preformed small unilamellar vesicles (SUV-DNA) of the same composition. Moreover, after 4h incubation in the media, DNA loss for DSPC DRV(DNA) was only minimal, suggesting this to be the most stable formulation. Oral (intragastric) liposome-mediated DNA immunisation studies employing a variety of DRV(DNA) formulations as well as naked DNA revealed that secreted IgA responses against the encoded HBsAg were (as early as three weeks after the first dose) substantially higher after dosing with 100 μg liposome-entrapped DNA compared to naked DNA. Throughout the fourteen week investigation, IgA responses in mice were consistently higher with the DSPC DRV(DNA) liposomes compared to naked DNA and correlated well with their improved DNA retention when exposed to model intestinal fluids. To investigate gene expression after oral (intragastric) administration, mice were given 100 μg of naked or DSPC DRV liposome-entrapped plasmid DNA expressing the enhanced green fluorescent protein (pCMV.EGFP). Expression of the gene, in terms of fluorescence intensity in the draining mesenteric lymph nodes, was much greater in mice dosed with liposomal DNA than in animals dosed with the naked DNA. These results suggest that DSPC DRV liposomes containing DNA (Lipodine™) may be a useful system for the oral delivery of DNA vaccines.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This review focuses on the use of particulate delivery systems for the purposes of immunization. This includes poly(lactide-co-glycolide) (PLGA), ISCOMs, liposomes, niosomes, virosomes, chitosan, and other biodegradable polymers. These systems are evaluated in terms of their use as carriers for protein subunit and DNA vaccines. There is an extensive focus on recent literature, the understanding of biological interactions, and relation of this to our present understanding of immunological mechanisms of action. In addition, there is consideration of formulation techniques including emulsification, solvent diffusion, DNA complexation, and entrapment. The diversity of formulation strategies presented is a testament to the exponential growth and interest in the area of vaccine delivery systems. A case study for the application of particulate vaccine carriers is assessed in terms of vaccine development and recent insights into the possible design and application of vaccines against two of the most important pathogens that threaten mankind and for which there is a significant need: Mycobacterium tuberculosis and human immunodeficiency virus. This review addresses the rationale for the use of particulate delivery systems in vaccine design in the context of the diversity of carriers for DNA- and protein-based vaccines and their potential for application in terms of the critical need for effective vaccines. © 2005 by Begell House, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The advantages of liposomes as delivery systems for peptide, protein and DNA vaccines is well-recognised, unfortunately their application has been stinted by their instability during storage and their limited shelf-life. Further, sterilisation of these systems has been problematic, with degradation of the liposomes being reported after sterilisation using the various techniques available. Work form our laboratory has investigated techniques that can be applied to particulate liposomal vaccines such that they can be prepared in a freeze-dried and sterile format. In this article, we describe techniques for the lyophilisation, cryoprotection and sterilisation of liposomal vaccines. Applying these methods allows for the retention of both the chemical integrity of the lipids and the key physico-chemical characteristics of the liposomes (e.g., particle size, zeta potential, and dynamic viscosity), thus supporting the enhanced transition of liposomal vaccines from the bench to the clinic. © 2006 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cationic liposomes have been extensively explored for their efficacy in delivering nucleic acids, by offering the ability to protect plasmid DNA against degradation, promote gene expression and, in the case of DNA vaccines, induce both humoural and cellular immune responses. DNA vaccines may also offer advantages in terms of safety, but they are less effective and need an adjuvant to enhance their immunogenicity. Therefore, cationic liposomes can be utilised as delivery systems and/or adjuvants for DNA vaccines to stimulate stronger immune responses. To explore the role of liposomal systems within plasmid DNA delivery, parameters such as the effect of lipid composition, method of liposome preparation and presence of electrolytes in the formulation were investigated in characterisation studies, in vitro transfection studies and in vivo biodistribution and immunisation studies. Liposomes composed of 1,2-dioleoyl-sn-glycero 3-phosphoethanolamine (DOPE) in combination with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 1,2-stearoyl-3- trimethylammonium-propane (DSTAP) were prepared by the lipid hydration method and hydrated in aqueous media with or without presence of electrolytes. Whilst the in vitro transfection efficiency of all liposomes resulted to be higher than Lipofectin, DSTAP-based liposomes showed significantly higher transfection efficiency than DOTAP-based formulations. Furthermore, upon intramuscular injection of liposomal DNA vaccines, DSTAP-based liposomes showed a significantly stronger depot effect at the injection site. This could explain the result of heterologous immunisation studies, which revealed DSTAP-based liposomal vaccines induce stronger immune responses compared to DOTAP-based formulations. Previous studies have shown that having more liposomally associated antigen at the injection site would lead to more drainage of them into the local lymph nodes. Consequently, this would lead to more antigens being presented to antigen presenting cells, which are circulating in lymph nodes, and this would initiate a stronger immune response. Finally, in a comparative study, liposomes composed of dimethyldioctadecylammonium bromide (DDA) in combination with DOPE or immunostimulatory molecule of trehalose 6,6-dibehenate (TDB) were prepared and investigated in vitro and in vivo. Results showed that although DDA:TDB is not able to transfect the cells efficiently in vitro, this formulation induces stronger immunity compared to DDA:DOPE due to the immunostimulatory effects of TDB. This study demonstrated, while the presence of electrolytes did not improve immune responses, small unilamellar vesicle (SUV) liposomes induced stronger humoural immune responses compared to dehydration rehydration vesicle (DRV) liposomes. Moreover, lipid composition was shown to play a key role in in vitro and in vivo behaviour of the formulations, as saturated cationic lipids provided stronger immune responses compared to unsaturated lipids. Finally, heterologous prime/boost immunisation promoted significantly stronger immune responses compared to homologous vaccination of DNA vaccines, however, a single immunisation of subunit vaccine provoked comparable levels of immune response to the heterologous regimen, suggesting more immune efficiency for subunit vaccines compared to DNA vaccines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of these studies was to compare the effect of liposome composition on physico-chemical characteristics and transfection efficacy of cationic liposomes both in vitro and in vivo. Comparison between 4 popularly used cationic lipids, showed 3b-N-(dimethylaminoethyl)carbamate (DC-Chol) to promote the highest transfect levels in cells in vitro with levels being at least 6 times higher than those of 1,2-di-O-octadecenyl-3-trimethylammonium propane (DOTMA). 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and dimethyldioctadecylammonium (DDA) and approximately twice as efficient as dipalmitoyl-trimethylammonium-propane (DPTAP). To establish the role of the helper lipid, DC-Chol liposomes were formulated in combination with either 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) or cholesterol (Chol) (1:1 molar ratio) with and without the addition of phosphatidyl choline. The choice of helper lipid incorporated within the bilayer was found to influence the formation of complexes, their resultant structure and their transfection efficiency in vitro, with SUV-DNA complexes containing optimum levels of DOPE giving higher transfection than those containing cholesterol. The inclusion of PC within the formulation also reduced transfection efficiency in vitro. However, when administered in vivo, SUV-DNA complexes composed of PC:Chol:DC-Chol at a molar ratio of 16:8:4 micromole/ml were the most effective at inducing splenocyte proliferation upon exposure to antigen in comparison to control spleens. These results demonstrate that there is no in vitro/in vivo correlation between the transfection efficacy of these liposome formulations and in vitro transfection in the above cell model cannot be taken as a reliable indicator for in vivo efficacy of DNA vaccines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of liposomes as carriers of peptide, protein, and DNA vaccines requires simple, easy-to-scale-up technology capable of high-yield vaccine entrapment. Work from this laboratory has led to the development of techniques that can generate liposomes of various sizes, containing soluble antigens such as proteins and particulate antigens (e.g., killed or attenuated bacteria or viruses), as well as antigen-encoding DNA vaccines. Entrapment of vaccines is carried out by the dehydration-rehydration procedure which entails freeze-drying of a mixture of "empty" small unilamellar vesicles and free vaccines. On rehydration, the large multilamellar vesicles formed incorporate up to 90% or more of the vaccine used. When such liposomes are microfluidized in the presence of nonentrapped material, their size is reduced to about 100 nm in diameter, with much of the originally entrapped vaccine still associated with the vesicles. A similar technique applied for the entrapment of particulate antigens (e.g., Bacillus subtilis spores) consists of freeze-drying giant vesicles (4-5 microm in diameter) in the presence of spores. On rehydration and sucrose gradient fractionation of the suspension, up to 30% or more of the spores used are associated with generated giant liposomes of similar mean size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enhanced immune responses for DNA and subunit vaccines potentiated by surfactant vesicle based delivery systems outlined in the present study, provides proof of principle for the beneficial aspects of vesicle mediated vaccination. The dehydration-rehydration technique was used to entrap plasmid DNA or subunit antigens into lipid-based (liposomes) or non-ionic surfactant-based (niosomes) dehydration-rehydration vesicles (DRV). Using this procedure, it was shown that both these types of antigens can be effectively entrapped in DRV liposomes and DRV niosomes. The vesicle size of DRV niosomes was shown to be twice the diameter (~2µm) of that of their liposome counterparts. Incorporation of cryoprotectants such as sucrose in the DRV procedure resulted in reduced vesicle sizes while retaining high DNA incorporation efficiency (~95%). Transfection studies in COS 7 cells demonstrated that the choice of cationic lipid, the helper lipid, and the method of preparation, all influenced transfection efficiency indicating a strong interdependency of these factors. This phenomenon has been further reinforced when 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE): cholesteryl 3b- [N-(N’ ,N’ -dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol)/DNA complexes were supplemented with non-ionic surfactants. Morphological analysis of these complexes using transmission electron microscopy and environmental scanning electron microscopy (ESEM) revealed the presence of heterogeneous structures which may be essential for an efficient transfection in addition to the fusogenic properties of DOPE. In vivo evaluation of these DNA incorporated vesicle systems in BALB/c mice showed weak antibody and cell-mediated immune (CMI) responses. Subsequent mock challenge with hepatitis B antigen demonstrated that, 1-monopalmitoyl glycerol (MP) based DRV, is a more promising DNA vaccine adjuvant. Studying these DRV systems as adjuvants for the Hepatitis B subunit antigen (HBsAg) revealed a balanced antibody/CMI response profile on the basis of the HBsAg specific antibody and cytokine responses which were higher than unadjuvated antigen. The effect of addition of MP, cholesterol and trehalose 6,6’-dibehenate (TDB) on the stability and immuno-efficacy of dimethyldioctadecylammonium bromide (DDA) vesicles was investigated. Differential scanning calorimetry showed a reduction in transition temperature of DDA vesicles by ~12°C when incorporated with surfactants. ESEM of MP based DRV system indicated an increased vesicle stability upon incorporation of antigen. Adjuvant activity of these systems tested in C57BL/6j mice against three subunit antigens i.e., mycobacterial fusion protein- Ag85B-ESAT-6, and two malarial antigens - merozoite surface protein-1, (MSP1), and glutamate rich protein, (GLURP) revealed that while MP and DDA based systems induced comparable antibody responses, DDA based systems induced powerful CMI responses.