17 resultados para DNA binding and transactivation
em Aston University Research Archive
Resumo:
Background: DNA-binding proteins play a pivotal role in various intra- and extra-cellular activities ranging from DNA replication to gene expression control. Identification of DNA-binding proteins is one of the major challenges in the field of genome annotation. There have been several computational methods proposed in the literature to deal with the DNA-binding protein identification. However, most of them can't provide an invaluable knowledge base for our understanding of DNA-protein interactions. Results: We firstly presented a new protein sequence encoding method called PSSM Distance Transformation, and then constructed a DNA-binding protein identification method (SVM-PSSM-DT) by combining PSSM Distance Transformation with support vector machine (SVM). First, the PSSM profiles are generated by using the PSI-BLAST program to search the non-redundant (NR) database. Next, the PSSM profiles are transformed into uniform numeric representations appropriately by distance transformation scheme. Lastly, the resulting uniform numeric representations are inputted into a SVM classifier for prediction. Thus whether a sequence can bind to DNA or not can be determined. In benchmark test on 525 DNA-binding and 550 non DNA-binding proteins using jackknife validation, the present model achieved an ACC of 79.96%, MCC of 0.622 and AUC of 86.50%. This performance is considerably better than most of the existing state-of-the-art predictive methods. When tested on a recently constructed independent dataset PDB186, SVM-PSSM-DT also achieved the best performance with ACC of 80.00%, MCC of 0.647 and AUC of 87.40%, and outperformed some existing state-of-the-art methods. Conclusions: The experiment results demonstrate that PSSM Distance Transformation is an available protein sequence encoding method and SVM-PSSM-DT is a useful tool for identifying the DNA-binding proteins. A user-friendly web-server of SVM-PSSM-DT was constructed, which is freely accessible to the public at the web-site on http://bioinformatics.hitsz.edu.cn/PSSM-DT/.
Resumo:
Protein-DNA interactions are involved in many fundamental biological processes essential for cellular function. Most of the existing computational approaches employed only the sequence context of the target residue for its prediction. In the present study, for each target residue, we applied both the spatial context and the sequence context to construct the feature space. Subsequently, Latent Semantic Analysis (LSA) was applied to remove the redundancies in the feature space. Finally, a predictor (PDNAsite) was developed through the integration of the support vector machines (SVM) classifier and ensemble learning. Results on the PDNA-62 and the PDNA-224 datasets demonstrate that features extracted from spatial context provide more information than those from sequence context and the combination of them gives more performance gain. An analysis of the number of binding sites in the spatial context of the target site indicates that the interactions between binding sites next to each other are important for protein-DNA recognition and their binding ability. The comparison between our proposed PDNAsite method and the existing methods indicate that PDNAsite outperforms most of the existing methods and is a useful tool for DNA-binding site identification. A web-server of our predictor (http://hlt.hitsz.edu.cn:8080/PDNAsite/) is made available for free public accessible to the biological research community.
Resumo:
The application of an antiserum to ultraviolet radiation (UVR)-damaged DNA is presented. A novel experimental system was employed to ascertain the limits of detection for this antiserum. Using a DNA standard containing a known amount of dimer, the limits of detection were found to be 0.9 fmol of dimer. This was compared to a limit of 20-50 fmol dimer using gas chromatography-mass spectrometry (GC-MS). Induction of thymine dimers in DNA following UVR exposure, as assessed using this antiserum in an enzyme-linked immunosorbent assay (ELISA), was compared with GC-MS measurements. The ELISA method successfully demonstrated the induction of lesions in DNA irradiated either with UVC or UVB, although despite high sensitivity, no discernible binding was seen to UVA-irradiated DNA. The antiserum was also shown to be applicable to immunocytochemistry, localising damage in the nuclei of UVR exposed keratinocytes in culture. The ability of the antiserum to detect DNA damage in skin biopsies of individuals exposed to sub-erythemal doses of UVR was also demonstrated. Moreover, the subsequent removal of this damage, as evidenced by a reduction in antiserum staining, was noted in sections of biopsies taken in the hours following irradiation. © 2003 Elsevier B.V. All rights reserved.
Resumo:
The methylation of cytosinc residues in DNA is thought to play an important role in the regulation of gene expression, with active genes generally being hypomethylated. With this in mind peptides were synthcsised to mimic the cytosine-5 methylation activity carried out by DNA mcthylase, which however, showed no ability to carry out this function. The imidazotetrazinoncs are a novel group of antitumour agents which have demonstrated good activity against a range of murinc tumours and human tumour xenografts, and hypomethylation of DNA has been implicated in the mechanism of action. Studies have been conducted on the mechanism by which such agents cause hypomethylation, using DNA methylase partially purified from murine L1210 leukaemia cells. Unmodified calf thymus DNA does not inhibit the transfer of methyl groups from SAM to M.lysodeikticus DNA by partially purified DNA methylase. However, if the calf thymus DNA is modified by alkylating agents such as imida-zotetrazinones or nitrosoureas, the treated DNA becomes an inhibitor of the methylation reaction. This has been correlated with the induction of DNA damage, such as single strand breaks, since X-ray treated DNA and deoxyribonuclease treatment produces a similar effect. The mechanism of inhibition by the drug treated or damaged DNA is thought to occur by binding of the enzyme to an increased concentration of non-substrate DNA, presumably by the occurrence of single strand breaks, since neither sonication nor treatment with the restriction enzyme Mspl caused an inhibition. Attempts were made to elucidate the strict structure activity relationship for antitumour activity observed amongst the imidazotctrazinones. The transfection of a murine colon adcnocarcinoma cell line (MAC 13) with DNA extracted from GM892 or Raji cells previously treated with either the methyl (temozolomide) or ethyl (ethazolastone) imidazotetrazinone was performed. X-irradiated DNA did not cause any suppression of cell growth, suggesting that it was not due to physical damage. Transfection of MAC 13 cells with DNA extracted from GM892 cells, was more effective at inhibiting growth than DNA from Raji cells. Temozolomide treated cellular DNA was a more potent growth inhibitor than that from ethazolastone treated cells. For both agents the growth inhibitory effect was most marked with DNA extracted 6h after drug addition, and after 24h no growth suppression was observed. This suggested that the growth inhibitory effect is due to a repairable lesion. .The methylation of M.lysodeikticus DNA by DNA methylase is inhibited potently and specifically by both hereto and homoribo and dcoxyri-bopolynucleotides containing guanine residues. The inhibitory effect is unaffected by chain length or sugar residue, but is abolished when the O-6 residue of guanine is substituted as in poly d(OGG)2o. Potent inhibition is also shown by polyinosinic and polyxanthylic acids but not by polyadenylic acid or by heteropolymers containing adcnine and thymine. These results suggest that the 6 position of the purine nucleus is important in binding of the DNA methylase to particular regions of the DNA and that the hydrogen bonding properties of this group are important in enzyme recognition. This was confirmed using synthetic oligonucleotides as substrates for DNA methylase. Enzymatic methylation of cytosine is completely suppressed, when O6 methylguanine replaces guanine in CG sites.
Resumo:
Aims: Previous data suggest heterogeneity in laminar distribution of the pathology in the molecular disorder frontotemporal lobar degeneration (FTLD) with transactive response (TAR) DNA-binding protein of 43kDa (TDP-43) proteinopathy (FTLD-TDP). To study this heterogeneity, we quantified the changes in density across the cortical laminae of neuronal cytoplasmic inclusions, glial inclusions, neuronal intranuclear inclusions, dystrophic neurites, surviving neurones, abnormally enlarged neurones, and vacuoles in regions of the frontal and temporal lobe. Methods: Changes in density of histological features across cortical gyri were studied in 10 sporadic cases of FTLD-TDP using quantitative methods and polynomial curve fitting. Results: Our data suggest that laminar neuropathology in sporadic FTLD-TDP is highly variable. Most commonly, neuronal cytoplasmic inclusions, dystrophic neurites and vacuolation were abundant in the upper laminae and glial inclusions, neuronal intranuclear inclusions, abnormally enlarged neurones, and glial cell nuclei in the lower laminae. TDP-43-immunoreactive inclusions affected more of the cortical profile in longer duration cases; their distribution varied with disease subtype, but was unrelated to Braak tangle score. Different TDP-43-immunoreactive inclusions were not spatially correlated. Conclusions: Laminar distribution of pathological features in 10 sporadic cases of FTLD-TDP is heterogeneous and may be accounted for, in part, by disease subtype and disease duration. In addition, the feedforward and feedback cortico-cortical connections may be compromised in FTLD-TDP. © 2012 The Authors. Neuropathology and Applied Neurobiology © 2012 British Neuropathological Society.
Resumo:
Protein-DNA interactions are an essential feature in the genetic activities of life, and the ability to predict and manipulate such interactions has applications in a wide range of fields. This Thesis presents the methods of modelling the properties of protein-DNA interactions. In particular, it investigates the methods of visualising and predicting the specificity of DNA-binding Cys2His2 zinc finger interaction. The Cys2His2 zinc finger proteins interact via their individual fingers to base pair subsites on the target DNA. Four key residue positions on the a- helix of the zinc fingers make non-covalent interactions with the DNA with sequence specificity. Mutating these key residues generates combinatorial possibilities that could potentially bind to any DNA segment of interest. Many attempts have been made to predict the binding interaction using structural and chemical information, but with only limited success. The most important contribution of the thesis is that the developed model allows for the binding properties of a given protein-DNA binding to be visualised in relation to other protein-DNA combinations without having to explicitly physically model the specific protein molecule and specific DNA sequence. To prove this, various databases were generated, including a synthetic database which includes all possible combinations of the DNA-binding Cys2His2 zinc finger interactions. NeuroScale, a topographic visualisation technique, is exploited to represent the geometric structures of the protein-DNA interactions by measuring dissimilarity between the data points. In order to verify the effect of visualisation on understanding the binding properties of the DNA-binding Cys2His2 zinc finger interaction, various prediction models are constructed by using both the high dimensional original data and the represented data in low dimensional feature space. Finally, novel data sets are studied through the selected visualisation models based on the experimental DNA-zinc finger protein database. The result of the NeuroScale projection shows that different dissimilarity representations give distinctive structural groupings, but clustering in biologically-interesting ways. This method can be used to forecast the physiochemical properties of the novel proteins which may be beneficial for therapeutic purposes involving genome targeting in general.
Resumo:
DNA-binding proteins are crucial for various cellular processes and hence have become an important target for both basic research and drug development. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to establish an automated method for rapidly and accurately identifying DNA-binding proteins based on their sequence information alone. Owing to the fact that all biological species have developed beginning from a very limited number of ancestral species, it is important to take into account the evolutionary information in developing such a high-throughput tool. In view of this, a new predictor was proposed by incorporating the evolutionary information into the general form of pseudo amino acid composition via the top-n-gram approach. It was observed by comparing the new predictor with the existing methods via both jackknife test and independent data-set test that the new predictor outperformed its counterparts. It is anticipated that the new predictor may become a useful vehicle for identifying DNA-binding proteins. It has not escaped our notice that the novel approach to extract evolutionary information into the formulation of statistical samples can be used to identify many other protein attributes as well.
Resumo:
DNA-binding proteins are crucial for various cellular processes, such as recognition of specific nucleotide, regulation of transcription, and regulation of gene expression. Developing an effective model for identifying DNA-binding proteins is an urgent research problem. Up to now, many methods have been proposed, but most of them focus on only one classifier and cannot make full use of the large number of negative samples to improve predicting performance. This study proposed a predictor called enDNA-Prot for DNA-binding protein identification by employing the ensemble learning technique. Experiential results showed that enDNA-Prot was comparable with DNA-Prot and outperformed DNAbinder and iDNA-Prot with performance improvement in the range of 3.97-9.52% in ACC and 0.08-0.19 in MCC. Furthermore, when the benchmark dataset was expanded with negative samples, the performance of enDNA-Prot outperformed the three existing methods by 2.83-16.63% in terms of ACC and 0.02-0.16 in terms of MCC. It indicated that enDNA-Prot is an effective method for DNA-binding protein identification and expanding training dataset with negative samples can improve its performance. For the convenience of the vast majority of experimental scientists, we developed a user-friendly web-server for enDNA-Prot which is freely accessible to the public. © 2014 Ruifeng Xu et al.
Resumo:
In April 2007, the Biochemical Society held a meeting to compare and contrast ligand binding and activation of Family A and B GPCRs (G-protein-coupled receptors). Being the largest class, Family A GPCRs usually receive the most attention, although a previous Biochemical Society meeting has focused on Family B GPCRs. The aim of the present meeting was to bring researchers of both families together in order to identify commonalities between the two. The present article introduces the proceedings of the meeting, briefly commenting on the focus of each of the following articles. ©The Authors.
Resumo:
Calcitonin receptor like-receptor is a family B G-protein coupled receptor (GPCR). It requires receptor activity modifying protein (RAMP) 1 to give a calcitonin gene-related peptide (CGRP) receptor. Little is known of how members of this receptor family function. Proline residues often form important kinks in alpha-helices. Therefore, all proline residues within the transmembrane helices of the receptor (Pro241, Pro244 in helix 4, Pro275 in helix 5, Pro321 and Pro331 in helix 6) were mutated to alanine. Pro241 Pro275, and Pro321 are highly conserved throughout all family B GPCRs. The binding of CGRP and its ability to stimulate cAMP production were investigated in mutant and wild-type receptors after transient transfection into COS-7 cells with RAMP1. The P321A mutation significantly decreased the pEC(50) for CGRP and reduced its affinity but did not change cell-surface expression. Antagonist binding [CGRP(8-37) and 1-piperidinecarboxamide N-[2-[[5amino-1-[[4-(4-pyridinyl)-1-piperazinyl]carbonyl]pentyl]amino]-1-[(3 5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quina zolinyl) (BIBN4096BS)] was little altered by the mutation. Adrenomedullin-mediated signaling was disrupted when P321A was coexpressed with RAMP1, RAMP2, or RAMP3. The P331A mutant produced a moderate reduction in CGRP binding and receptor activation. Mutation of the other residues had no effect on receptor function. Thus, Pro321 and Pro331 are required for agonist binding and receptor activation. Modeling suggested that Pro321 induces a bend in helix 6, bringing its C terminus near that of helix 3, as seen in many family A GPCRs. This is abolished in P321A. P321A-I325P predicted to restore this conformation, showed wild-type activation. Modeling can also rationalize the effects of transmembrane proline mutants previously reported for another family B GPCR, the VPAC(1) receptor.
Resumo:
The muscarinic receptor from the cerebral cortex, heart, and lacrimal gland can be solubilized in the zwitterionic detergent 3-(3-cholamidopropyl)dimethylammonio-2-hydroxy-1-propane sulfonate (CHAPSO) with retention of high affinity [3H]N-methyls-copolamine binding. However, in this detergent there are significant differences in the binding properties of the receptors, compared with those observed in membranes and digitonin solution. Some agents retain a degree of selectivity. In the heart and cortex, agonists can bind with high affinity to a receptor-GTP-binding protein complex. A second, lower affinity, agonist binding state is also present, which resembles a class of sites seen in membranes but not in digitonin solution. The high affinity agonist binding state has been resolved from the lower affinity state on sucrose density gradient centrifugation. Hydrodynamic analysis suggests that the high affinity state is approximately 110,000 Da larger than the lower affinity state. The binding properties of the receptor in CHAPSO can be altered to those seen in digitonin by exchanging detergents after CHAPSO solubilization.
Resumo:
Aims: Characterization of the representative protozoan Acanthamoeba polyphaga surface carbohydrate exposure by a novel combination of flow cytometry and ligand-receptor analysis. Methods and Results: Trophozoite and cyst morphological forms were exposed to a panel of FITC-lectins. Population fluorescence associated with FITC-lectin binding to acanthamoebal surface moieties was ascertained by flow cytometry. Increasing concentrations of representative FITC-lectins, saturation binding and determination of K d and relative Bmax values were employed to characterize carbohydrate residue exposure. FITC-lectins specific for N-acetylglucosamine, N-acetylgalactosamine and mannose/glucose were readily bound by trophozoite and cyst surfaces. Minor incremental increases in FITC-lectin concentration resulted in significant differences in surface fluorescence intensity and supported the calculation of ligand-binding determinants, Kd and relative B max, which gave a trophozoite and cyst rank order of lectin affinity and surface receptor presence. Conclusions: Trophozoites and cysts expose similar surface carbohydrate residues, foremost amongst which is N-acetylglucosamine, in varying orientation and availability. Significance and Impact of the Study: The outlined versatile combination of flow cytometry and ligand-receptor analysis allowed the characterization of surface carbohydrate exposure by protozoan morphological forms and in turn will support a valid comparison of carbohydrate exposure by other single-cell protozoa and eucaryotic microbes analysed in the same manner.
Resumo:
The receptor for CGRP (calcitonin gene-related peptide) is a heterodimer between a GPCR (G-protein-coupled receptor), CLR (calcitonin receptor-like receptor) and an accessory protein, RAMP1 (receptor activity-modifying protein 1). Models have been produced of RAMP1 and CLR. It is likely that the C-terminus of CGRP interacts with the extracellular N-termini of CLR and RAMP1; the extreme N-terminus of CLR is particularly important and may interact directly with CGRP and also with RAMP1. The N-terminus of CGRP interacts with the TM (transmembrane) portion of the receptor; the second ECL (extracellular loop) is especially important. Receptor activation is likely to involve the relative movements of TMs 3 and 6 to create a G-protein-binding pocket, as in Family A GPCRs. Pro321 in TM6 appears to act as a pivot. At the base of TMs 2 and 3, Arg151, His155 and Glu211 may form a loose equivalent of the Family A DRY (Asp-Arg-Tyr) motif. Although the details of this proposed activation mechanism clearly do not apply to all Family B GPCRs, the broad outlines may be conserved. ©The Authors.
Resumo:
This article on the basic concepts of genetics concentrates on doeoxyribose nucleic acid (DNA), the chemical constituent of the genes. First, it will cover how DNA was discovered to be the substance of the genes. Second, the structure of DNA is revealed together with how DNA molecules can make copies of themselves. Third, the nature of the genetic code contained in DNA and how this code directs the manufacture of proteins is described. Finally, the effects of mutation of the genes and how the activities of genes are regulated will be discussed together with the relevance of these concepts to ocular disease.
Resumo:
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent efflux pump that can confer resistance to multiple anticancer drugs and transport conjugated organic anions. Unusually, transport of several MRP1 substrates requires glutathione (GSH). For example, estrone sulfate transport by MRP1 is stimulated by GSH, vincristine is co-transported with GSH, or GSH can be transported alone. In the present study, radioligand binding assays were developed to investigate the mechanistic details of GSH-stimulated transport of estrone sulfate by MRP1. We have established that estrone sulfate binding to MRP1 requires GSH, or its non-reducing analogue S-methyl GSH (S-mGSH), and further that the affinity (Kd) of MRP1 for estrone sulfate is 2.5-fold higher in the presence of S-mGSH than GSH itself. Association kinetics show that GSH binds to MRP1 first, and we propose that GSH binding induces a conformational change, which makes the estrone sulfate binding site accessible. Binding of non-hydrolyzable ATP analogues to MRP1 decreases the affinity for estrone sulfate. However, GSH (or S-mGSH) is still required for estrone sulfate binding, and the affinity for GSH is unchanged. Estrone sulfate affinity remains low following hydrolysis of ATP. The affinity for GSH also appears to decrease in the post-hydrolytic state. Our results indicate ATP binding is sufficient for reconfiguration of the estrone sulfate binding site to lower affinity and argue for the presence of a modulatory GSH binding site not associated with transport of this tripeptide. A model for the mechanism of GSH-stimulated estrone sulfate transport is proposed.