13 resultados para DISPERSED PHASE
em Aston University Research Archive
Resumo:
Some of the problems arising from the inherent instability of emulsions are discussed. Aspects of emulsion stability are described and particular attention is given to the influence of the chemical nature of the dispersed phase on adsorbed film structure and stability, Emulsion stability has been measured by a photomicrographic technique. Electrophoresis, interfacial tension and droplet rest-time data were also obtained. Emulsions were prepared using a range of oils, including aliphatic and aromatic hydrocarbons, dispersed In a solution of sodium dodecyl sulphate. In some cases a small amount of alkane or alkanol was incorporated into the oil phase. In general the findings agree with the classical view that the stability of oil-in-water emulsions is favoured by a closely packed interfacial film and appreciable electric charge on the droplets. The inclusion of non-ionic alcohol leads to enhanced stability, presumably owing to the formation of a "mixed" interfacial film which is more closely packed and probably more coherent than that of the anionic surfactant alone. In some instances differences in stability cannot he accounted for simply by differences in interfacial adsorption or droplet charge. Alternative explanations are discussed and it is postulated that the coarsening of emulsions may occur not only hy coalescence but also through the migration of oil from small droplets to larger ones by molecular diffusion. The viability of using the coalescence rates of droplets at a plane interface as a guide to emulsion stability has been researched. The construction of a suitable apparatus and the development of a standard testing procedure are described. Coalescence-time distributions may be correlated by equations similar to those presented by other workers, or by an analysis based upon the log-normal function. Stability parameters for a range of oils are discussed in terms of differences in film drainage and the natl1re of the interfacial film. Despite some broad correlations there is generally poor agreement between droplet and emulsion stabilities. It is concluded that hydrodynamic factors largely determine droplet stability in the systems studied. Consequently droplet rest-time measurements do not provide a sensible indication of emulsion stability,
Resumo:
Mass transfer rates were studied using the falling drop method. Cibacron Blue 3 GA dye was the transferring solute from the salt phase to the PEG phase. Measurements were undertaken for several concentrations of the dye and the phase-forming solutes and with a range of different drop sizes, e.g. 2.8, 3.0 and 3.7 mm. The dye was observed to be present in the salt phase as finely dispersed solids but a model confirmed that the mass transfer process could still be described by an equation based upon the Whitman two-film model. The overall mass transfer coefficient increased with increasing concentration of the dye. The apparent mass transfer coefficient ranged from 1 x 10-5 to 2 x 10 -4 m/s. Further experiments suggested that mass transfer was enhanced at high concentration by several mechanisms. The dye was found to change the equilibrium composition of the two phases, leading to transfer of salt between the drop and continuous phases. It also lowered the interfacial tension (i.e. from 1.43 x 10-4 N/m for 0.01% w/w dye concentration to 1.07 x 10-4 N/m for 0.2% w/w dye concentration) between the two phases, which could have caused interfacial instabilities (Marangoni effects). The largest drops were deformable, which resulted in a significant increase in the mass transfer rate. Drop size distribution and Sauter mean drop diameter were studied on-line in a 1 litre agitated vessel using a laser diffraction technique. The effects of phase concentration, dispersed phase hold-up and impeller speed were investigated for the salt-PEG system. An increase in agitation speed in the range 300 rpm to 1000 rpm caused a decrease in mean drop diameter, e.g. from 50 m to 15 m. A characteristic bimodal drop size distribution was established within a very short time. An increase in agitation rate caused a shift of the larger drop size peak to a smaller size.
Resumo:
A consequence of a loss of coolant accident is that the local insulation material is damaged and maybe transported to the containment sump where it can penetrate and/or block the sump strainers. An experimental and theoretical study, which examines the transport of mineral wool fibers via single and multi-effect experiments is being performed. This paper focuses on the experiments and simulations performed for validation of numerical models of sedimentation and resuspension of mineral wool fiber agglomerates in a racetrack type channel. Three velocity conditions are used to test the response of two dispersed phase fiber agglomerates to two drag correlations and to two turbulent dispersion coefficients. The Eulerian multiphase flow model is applied with either one or two dispersed phases.
Resumo:
A study of the hydrodynamics and mass transfer characteristics of a liquid-liquid extraction process in a 450 mm diameter, 4.30 m high Rotating Disc Contactor (R.D.C.) has been undertaken. The literature relating to this type of extractor and the relevant phenomena, such as droplet break-up and coalescence, drop mass transfer and axial mixing has been revjewed. Experiments were performed using the system C1airsol-350-acetone-water and the effects of drop size, drop size-distribution and dispersed phase hold-up on the performance of the R.D.C. established. The results obtained for the two-phase system C1airso1-water have been compared with published correlations: since most of these correlations are based on data obtained from laboratory scale R.D.C.'s, a wide divergence was found. The hydrodynamics data from this study have therefore been correlated to predict the drop size and the dispersed phase hold-up and agreement has been obtained with the experimental data to within +8% for the drop size and +9% for the dispersed phase hold-up. The correlations obtained were modified to include terms involving column dimensions and the data have been correlated with the results obtained from this study together with published data; agreement was generally within +17% for drop size and within +14% for the dispersed phase hold-up. The experimental drop size distributions obtained were in excellent agreement with the upper limit log-normal distributions which should therefore be used in preference to other distribution functions. In the calculation of the overall experimental mass transfer coefficient the mean driving force was determined from the concentration profile along the column using Simpson's Rule and a novel method was developed to calculate the overall theoretical mass transfer coefficient Kca1, involving the drop size distribution diagram to determine the volume percentage of stagnant, circulating and oscillating drops in the sample population. Individual mass transfer coefficients were determined for the corresponding droplet state using different single drop mass transfer models. Kca1 was then calculated as the fractional sum of these individual coefficients and their proportions in the drop sample population. Very good agreement was found between the experimental and theoretical overall mass transfer coefficients. Drop sizes under mass transfer conditions were strongly dependant upon the direction of mass transfer. Drop Sizes in the absence of mass transfer were generally larger than those with solute transfer from the continuous to the dispersed phase, but smaller than those with solute transfer in the opposite direction at corresponding phase flowrates and rotor speed. Under similar operating conditions hold-up was also affected by mass transfer; it was higher when solute transfered from the continuous to the dispersed phase and lower when direction was reversed compared with non-mass transfer operation.
Resumo:
This work investigated the purification of phosphoric acid using a suitable organic solvent, followed by re-extraction of the acid from the solvent using water. The work consisted of practical batch and continuous studies and the economics and design of a full scale plant, based on the experimental data. A comprehensive literature survey on the purification of wet process phosphoric acid by organic solvents is presented and the literature describing the design and operation of mixer-settlers has also been reviewed. In batch studies, the equilibrium and distribution curves for the systems water-phosphoric acid-solvent for Benzaldehyde, Cyclohexanol and Methylisobutylketone (MIBK) were determined together with hydrodynamic characteristics for both pure and impure systems. The settling time increased with acid concentration, but power input had no effect. Drop size was found to reduce with acid concentration and power input. For the continuous studies a novel horizontal mixer~settler cascade was designed, constructed and operated using pure and impure acid with MIBK as the solvent. The cascade incorporates three air turbine agitated, cylindrical 900 ml mixers, and three cylindrical 200 ml settlers with air-lift solvent interstage transfer. Mean drop size in the fully baffled mixer was correlated. Drop size distributions were log-normal and size decreased with acid concentration and power input and increased with dispersed phase hold-up. Phase inversion studies showed that the width of the ambivalent region depended upon rotor speed, hold-up and acid concentration. Settler characteristics were investigated by measuring wedge length. Distribution coefficients of impurities and acid were also investigated. The following optimum extraction conditions were found: initial acid concentration 63%, phase ratio of solvent to acid 1:1 (v/v), impeller speed recommended 900 r.p.m. In the washing step the maximum phase ratio of solvent to water was 8:1 (v/v). Work on phosphoric acid concentration involved constructing distillation equipment consisting of a 10& spherical still. A 100 T/d scale detailed process design including capital cost, operating cost and profitability was also completed. A profit model for phosphoric acid extraction was developed and maximised. Recommendations are made for both the application of the results to a practical design and for extensions of the study.
Resumo:
A study has been made of the coalescence of secondary dispersions in beds of woven meshes. The variables investigated were superficial velocity, bed depth, mesh geometry and fibre material; the effects of presoaking the bed in the dispersed phase before operation were also considered. Equipment was design~d to generate a 0.1% phase ratio toluene in water dispersion whose mean drop size was determined using a Coulter Counter. The coalesced drops were sized by photography and a novel holographic technique was developed to evaluate the mean diameter of the effluent secondary drops. Previous models describing single phase flow in porous media are reviewed and it was found that the experimental data obtained in this study is best represented by Keller's equation which is based on a physical model similar to the internal structure of the meshes. Statistical analysis of two phase data produced a correlation, for each mesh tested, relating the pressure drop to superficial velocity and bed depth. The flow parameter evaluated from the single phase model is incorporated into a theoretical comparison of drop capture mechanisms which indicated that direct and indirect interception are predominant. The resulting equation for drop capture efficiericy is used to predict the initial, local drop capture rate in a coalescer. A mathematical description of the saturation profiles was formulated and verified by average saturation data. Based 6n the Blake-Kozeny equation, an expression is derived analytically to predict the two phase pressure drop using the parameters which characterise the saturation profiles. By specifying the local saturation at the inlet face for a given velocity, good agreement between experimental pressure drop data and the model predictions was obtained.
Resumo:
The literature relating to the performance of pulsed sieve plate liquid-liquid extraction columns and the relevant hydrodynamic phenomenon have been surveyed. Hydrodynamic behaviour and mass transfer characteristics of droplets in turbulent and non-turbulent conditions have also been reviewed. Hydrodynamic behaviour, i.e. terminal and characteristic velocity of droplets, droplet size and droplet breakup processes, and mass transfer characteristics of single droplets (d≤0.6 cm) were investigated under pulsed (mixer-settler & transitional regimes) and non-pulsed conditions in a 5.0 cm diameter, 100 cm high, pulsed sieve plate column with three different sieve plate types and variable plate spacing. The system used was toluene (displaced) - acetone - distilled water. Existing photographic techniques for following and recording the droplet behaviour, and for observing the parameters of the pulse and the pulse shape were further developed and improved. A unique illumination technique was developed by which a moving droplet could be photographed using cine or video photography with good contrast without using any dye. Droplet size from a given nozzle and droplet velocity for a given droplet diameter are reduced under pulsing condition, and it was noted that this effect is enhanced in the presence of sieve plate. The droplet breakup processes are well explained by reference to an impact-breakup mechanism. New correlations to predict droplet diameter based on this mechanism are given below.vskip 1.0cm or in dimensionless groups as follows:- (We)crit= 3.12 - 1.79 (Eo)crit A correlation based on the isotropic turbulence theory was developed to calculate droplet diameter in the emulsion regime.vskip 1.0cm Experimental results show that in the mixer-settler and transitional regimes, pulsing parameters had little effect on the overall dispersed phase mass transfer coefficient during the droplet formation and unhindered travel periods.
Resumo:
A study has been made of the coalescence of secondary dispersions in beds of monosized glass ballotini. The variables investigated were superficial velocity, bed depth, ballotini size and dispersed phase concentration. Equipment was designed to generate a toluene ln water dispersion with phase ratios from 0.1 - 1.0 v/v % and whose mean drop size was determined using a Coulter Counter. The coalesced drops were sized by photography and the mean diameter of the effluent drops was determined using a Malvern Particle Size Analyser. Previous models describing single phase flow in porous media are reviewed and it was found that the experimental data obtained in this study is best represented by the Carman-Kozeny equations. Relative permeability correlations were used to predict the saturation profiles across the bed from measured two phase pressure drop data. Theoretical comparison of drop capture mechanisms indicated that direct and indirect interception are predominant. The total capture efficiency for the bed can also be evaluated using Spielman and Fitzpatrick's correlation.The resulting equation is used to predict the initial, local drop capture rate in a coalescer. A mathematical description of the saturation profiles is formulated and verified by the saturation profiles obtained by relative permeability. Based on the Carman-Kozeny equation, an expression is derived analytically to .predict the two phase pressure drop using the parameters which characterise the saturation profiles. By specifying the local saturation at the inlet face for a given velocity and phase ratio, good agreement between experimental pressure drop data and the model predictions was obtained. An attempt to predict the exit drop size has been made using an analogy for flow through non cylindrical channels.
Resumo:
The literature relating to haze formation, methods of separation, coalescence mechanisms, and models by which droplets <100 μm are collected, coalesced and transferred, have been reviewed with particular reference to particulate bed coalescers. The separation of secondary oil-water dispersions was studied experimentally using packed beds of monosized glass ballotini particles. The variables investigated were superficial velocity, bed depth, particle size, and the phase ratio and drop size distribution of inlet secondary dispersion. A modified pump loop was used to generate secondary dispersions of toluene or Clairsol 350 in water with phase ratios between 0.5-6.0 v/v%.Inlet drop size distributions were determined using a Malvern Particle Size Analyser;effluent, coalesced droplets were sized by photography. Single phase flow pressure drop data were correlated by means of a Carman-Kozeny type equation. Correlations were obtained relating single and two phase pressure drops, as (ΔP2/μc)/ΔP1/μd) = kp Ua Lb dcc dpd Cine A flow equation was derived to correlate the two phase pressure drop data as, ΔP2/(ρcU2) = 8.64*107 [dc/D]-0.27 [L/D]0.71 [dp/D]-0.17 [NRe]1.5 [e1]-0.14 [Cin]0.26 In a comparison between functions to characterise the inlet drop size distributions a modification of the Weibull function provided the best fit of experimental data. The general mean drop diameter was correlated by: q_p q_p p_q /β Γ ((q-3/β) +1) d qp = d fr .α Γ ((P-3/β +1 The measured and predicted mean inlet drop diameters agreed within ±15%. Secondary dispersion separation depends largely upon drop capture within a bed. A theoretical analysis of drop capture mechanisms in this work indicated that indirect interception and London-van der Waal's mechanisms predominate. Mathematical models of dispersed phase concentration m the bed were developed by considering drop motion to be analogous to molecular diffusion.The number of possible channels in a bed was predicted from a model in which the pores comprised randomly-interconnected passage-ways between adjacent packing elements and axial flow occured in cylinders on an equilateral triangular pitch. An expression was derived for length of service channels in a queuing system leading to the prediction of filter coefficients. The insight provided into the mechanisms of drop collection and travel, and the correlations of operating parameters, should assist design of industrial particulate bed coalescers.
Resumo:
The literature relating to sieve plate liquid extraction columns and relevant hydrodynamic phenomena have been surveyed. Mass transfer characteristics during drop formation, rise and coalescence, and related models were also reviewed. Important design parameters i.e. flooding, dispersed phase hold-up, drop size distribution, mean drop size, coalescence/flocculation zone height beneath a plate and jetting phenomena were investigated under non-mass transfer and mass transfer conditions in a 0.45m diameter, 2.3m high sieve plate column. This column had provision for four different plate designs, and variable plate spacing and downcomer heights, and the system used was Clairsol `350' (dispersed) - acetone - deionised water (continuous) with either direction of mass transfer. Drop size distributions were best described by the functions proposed by Gal-or, and then Mugele-Evans. Using data from this study and the literature, correlations were developed for dispersed phase hold-up, mean drop size in the preferred jetting regime and in the non-jetting regime, and coalescence zone height. A method to calculate the theoretical overall mass transfer coefficient allowing for the range of drop sizes encountered in the column gave the best fit to experimental data. This applied the drop size distribution diagram to estimate the volume percentage of stagnant, circulating and oscillating drops in the drop population. The overall coefficient Kcal was then calculated as the fractional sum of the predicted individual single drop coefficients and their proportion in the drop population. In a comparison between the experimental and calculated overall mass transfer coefficients for cases in which all the drops were in the oscillating regime (i.e. 6.35mm hole size plate), and for transfer from the dispersed(d) to continuous(c) phase, the film coefficient kd predicted from the Rose-Kintner correlation together with kc from that of Garner-Tayeban gave the best representation. Droplets from the 3.175mm hole size plate, were of a size to be mainly circulating and oscillating; a combination of kd from the Kronig-Brink (circulating) and Rose-Kintner (oscillating) correlations with the respective kc gave the best agreement. The optimum operating conditions for the SPC were identified and a procedure proposed for design from basic single drop data.
Resumo:
A 10 cm diameter four-stage Scheibel column with dispersed phase wetted packing sections has been constructed to study the hydrodynamics and mass transfer using the system toluene-acetone-water. The literature pertaining to the above extractor has been examined and the important phenomena such as droplet break-up and coalescence, mass transfer and backmixing have been reviewed. A critical analysis of the backmixing or axial mixing models and the corresponding techniques for parameter estimation was applied and an optimization technique based on Marquardt's algorithm was implemented. A single phase sampling technique was developed to estimate the acetone concentration profile in both phases along the column. Column flooding characteristics were investigated under various operating conditions and it was found that, when the impellers were located at about DI/5cm from the upper surface of the pads, the limiting flow rates increased with impeller speed. This unusual behaviour was explained in terms of the pumping effect created by the turbine impellers. Correlations were developed to predict Sauter mean drop diameters. A five-cell with backflow model was used to estimate the column performance (stage efficiency) and phases non-ideality (backflow parameters). Overall mass transfer coefficients were computed using the above model and compared with those calculated using the correlations based on single drop mechanism.
Resumo:
An alternative approach to the modelling of solid-liquid and gas-liquid-solid flows for a 5:1 height to width aspect ratio bubble column is presented here. A modified transport equation for the volume fraction of a dispersed phase has been developed for the investigation of turbulent buoyancy driven flows (Chem. Eng. Proc., in press). In this study, a modified transport equation has been employed for discrete phase motion considering both solid-liquid and gas-liquid-solid flows. The modelling of the three-phase flow in a bubble column was achieved in the following case: injecting a slug of solid particles into the column for 10 s at a velocity of 0.1 m s-1 and then the gas phase flow was initiated with a superficial gas velocity of 0.02 cm s-1. © 2003 Elsevier B.V. All rights reserved.
Resumo:
A family of bulk and SBA-15 supported peroxo niobic acid sols were prepared by peptisation of niobic acid precipitates with H2O2 as heterogeneous catalysts for aqueous phase glucose and fructose conversion to 5-hydroxymethylfurfural (5-HMF). Niobic acid nanoparticles possess a high density of Brønsted and Lewis acid sites, conferring good activity towards glucose and fructose conversion, albeit with modest 5-HMF yields under mild reaction conditions (100 °C). Thermally-induced niobia crystallisation suppresses solid acidity and activity. Nanoparticulate niobic acid dispersed over SBA-15 exhibits pure Brønsted acidity and an enhanced Turnover Frequency for fructose dehydration.